In this article, the thin-shell formulation is applied to efficiently modeling the Stern layer within computational algorithms oriented toward the boundary element solution of the linearized Poisson-Boltzmann equation. The attention is focused on the calculation of the electrostatic potential in proximity to a biomolecule immersed in an electrolyte medium. Following the proposed approach, the Stern layer is made to collapse to a zero-thickness region (two-dimensional surface) with interface conditions linking the electrostatic potential over the molecular and the bulk ion accessible surfaces.
View Article and Find Full Text PDF