Background: The failing heart displays increased glycolytic flux that is not matched by a commensurate increase in glucose oxidation. This mismatch induces increased anaplerotic flux and inefficient glucose metabolism. We previously found adult transgenic mouse hearts expressing the fetal troponin I isoform, (ssTnI) to be protected from ischemia by increased glycolysis.
View Article and Find Full Text PDFP-21 activated kinases, or PAKs, are serine-threonine kinases that serve a role in diverse biological functions and organ system diseases. Although PAK signaling has been the focus of many investigations, still our understanding of the role of PAK in inflammation is incomplete. This review consolidates what is known about PAK1 across several cell types, highlighting the role of PAK1 and PAK2 in inflammation in relation to NADPH oxidase activation.
View Article and Find Full Text PDFThe objective of this study was to determine the role of A-Kinase Anchoring Protein (AKAP)-Lbc in the development of heart failure, by investigating AKAP-Lbc-protein kinase D1 (PKD1) signaling in vivo in cardiac hypertrophy. Using a gene-trap mouse expressing a truncated version of AKAP-Lbc (due to disruption of the endogenous AKAP-Lbc gene), that abolishes PKD1 interaction with AKAP-Lbc (AKAP-Lbc-ΔPKD), we studied two mouse models of pathological hypertrophy: i) angiotensin (AT-II) and phenylephrine (PE) infusion and ii) transverse aortic constriction (TAC)-induced pressure overload. Our results indicate that AKAP-Lbc-ΔPKD mice exhibit an accelerated progression to cardiac dysfunction in response to AT-II/PE treatment and TAC.
View Article and Find Full Text PDFIn the present study, we compared the cardioprotective effects of TRV120023, a novel angiotensin II (ANG II) type 1 receptor (AT1R) ligand, which blocks G protein coupling but stimulates β-arrestin signaling, against treatment with losartan, a conventional AT1R blocker in the treatment of cardiac hypertrophy and regulation of myofilament activity and phosphorylation. Rats were subjected to 3 wk of treatment with saline, ANG II, ANG II + losartan, ANG II + TRV120023, or TRV120023 alone. ANG II induced increased left ventricular mass compared with rats that received ANG II + losartan or ANG II + TRV120023.
View Article and Find Full Text PDFDespite the increasing prevalence of heart failure with preserved left ventricular function, there are no specific treatments, partially because the mechanism of impaired relaxation is incompletely understood. Evidence indicates that cardiac relaxation may depend on nitric oxide (NO), generated by NO synthase (NOS) requiring the co-factor tetrahydrobiopterin (BH(4)). Recently, we reported that hypertension-induced diastolic dysfunction was accompanied by cardiac BH(4) depletion, NOS uncoupling, a depression in myofilament cross-bridge kinetics, and S-glutathionylation of myosin binding protein C (MyBP-C).
View Article and Find Full Text PDFThe phosphorylation state of several cardiac myofilament proteins changes with the level of stretch in intact, twitch-contracting cardiac muscles. It remains unclear which kinases are involved in the length-dependent phosphorylation of these proteins. We set out to investigate which kinases are involved after a step-wise change in cardiac muscle length.
View Article and Find Full Text PDFBackground: AKAP-Lbc is a scaffold protein that coordinates cardiac hypertrophic signaling.
Results: AKAP-Lbc interacts with Shp2, facilitating its regulation by PKA.
Conclusion: AKAP-Lbc integrates PKA and Shp2 signaling in the heart.
Rationale: Previously, we demonstrated that a deoxycorticosterone acetate (DOCA)-salt hypertensive mouse model produces cardiac oxidative stress and diastolic dysfunction with preserved systolic function. Oxidative stress has been shown to increase late inward sodium current (I(Na)), reducing the net cytosolic Ca(2+) efflux.
Objective: Oxidative stress in the DOCA-salt model may increase late I(Na), resulting in diastolic dysfunction amenable to treatment with ranolazine.
Background: Stress-induced hypertrophic remodeling is a critical pathogenetic process leading to heart failure. Although many signal transduction cascades are demonstrated as important regulators to facilitate the induction of cardiac hypertrophy, the signaling pathways for suppressing hypertrophic remodeling remain largely unexplored. In this study, we identified p21-activated kinase 1 (Pak1) as a novel signaling regulator that antagonizes cardiac hypertrophy.
View Article and Find Full Text PDFp21-activated kinase 1 (Pak1) is a serine/threonine kinase that activates protein phosphatase 2a, resulting in the dephosphorylation of cardiac proteins and increased myofilament Ca(2+) sensitivity. Emerging evidence indirectly indicates a role for Pak1 in ischemia-reperfusion (I/R), but direct evidence is lacking. We hypothesize that activation of the Pak1 signaling pathway is a cardioprotective mechanism that prevents or reverses the detrimental effects of ischemic injury by inducing posttranslational modifications in myofilament proteins that ultimately improve cardiac contractility following ischemic insult.
View Article and Find Full Text PDFEarlier investigations in our lab indicated an anti-adrenergic effect induced by activation of p21-activated kinase (Pak-1) and protein phosphatase 2A (PP2A). Our objective was to test the hypothesis that Pak-1/PP2A is a signaling cascade controlling stress-induced cardiac growth. We determined the effects of ablation of the Pak-1 gene on the response of the myocardium to chronic stress of isoproterenol (ISO) administration.
View Article and Find Full Text PDFBackground: intracellular Na+ accumulation during ischemia and reperfusion leads to cytosolic Ca2+ overload through reverse-mode operation of the sarcolemmal Na+ -Ca2+ exchanger. Cytosolic Ca2+ accumulation promotes mitochondrial Ca2+ (Ca2+ m) overload, leading to mitochondrial injury. We investigated whether limiting sarcolemmal Na+ entry during resuscitation from ventricular fibrillation (VF) attenuates Ca2+ m overload and lessens myocardial dysfunction in a rat model of VF and closed-chest resuscitation.
View Article and Find Full Text PDF