Publications by authors named "Domenico Garozzo"

Mucopolysaccharidoses (MPS) are lysosomal storage diseases caused by defects in catabolism of glycosaminoglycans. MPS I, II, III and VII are associated with lysosomal accumulation of heparan sulphate and manifest with neurological deterioration. Most of these neurological MPS currently lack effective treatments.

View Article and Find Full Text PDF
Article Synopsis
  • The chapter details a laboratory methodology for analyzing the N-glycome in cerebrospinal fluid (CSF) using various techniques.
  • N-glycans are extracted from glycoproteins through digestion with PNGase F and purified using specialized solid phase extraction cartridges.
  • The resulting glycans are permethylated for enhanced analysis via mass spectrometry, helping to link specific N-glycome profiles to different stages of Alzheimer's disease.
View Article and Find Full Text PDF

In this chapter, we will present a high-throughput method applied in our laboratory for the structural elucidation of the cerebrospinal fluid (CSF) N-glycome. This methodology is based on a commercial equipment developed by WATERS™ to speed up N-deglycosylation and N-glycan labeling of glycoproteins of pharmaceutical and biological interest such as monoclonal antibodies. This analytical kit is sold under the trade name of RapiFluor-MS (RFMS).

View Article and Find Full Text PDF

Sialidosis is an ultra-rare multisystemic lysosomal disease caused by mutations in the neuraminidase 1 (NEU1) gene. The severe type II form of the disease manifests with a prenatal/infantile or juvenile onset, bone abnormalities, severe neuropathology, and visceromegaly. A subset of these patients present with nephrosialidosis, characterized by abrupt onset of fulminant glomerular nephropathy.

View Article and Find Full Text PDF

Deleterious variants in acetylneuraminate pyruvate lyase (NPL) cause skeletal myopathy and cardiac edema in humans and zebrafish, but its physiological role remains unknown. We report generation of mouse models of the disease: , carrying the human p.Arg63Cys variant, and with a 116-bp exonic deletion.

View Article and Find Full Text PDF
Article Synopsis
  • * The study isolated and analyzed SPFs from LAC92, demonstrating significant cytostatic and antiproliferative effects on the human colon cancer cell line HCT116, primarily linked to the presence of peptide 92.
  • * Further investigation is required to fully understand the benefits of LAC92 and its active components, especially peptide 92, for potential future applications in functional health products and cancer treatments.
View Article and Find Full Text PDF

Congenital disorders of glycosylation (CDG) are genetic multisystem diseases, characterized by defective glycoconjugate synthesis. A small number of CDG with isolated liver damage have been described, such as TMEM199-CDG, a non-encephalopathic liver disorder with Wilson disease-like phenotype. Only eight patients with TMEM199-CDG have been described including seven Europeans (originating from Greece and Italy) and one Chinese.

View Article and Find Full Text PDF

Vacuolar-type H+-ATPase (V-ATPase) is a multimeric complex present in a variety of cellular membranes that acts as an ATP-dependent proton pump and plays a key role in pH homeostasis and intracellular signalling pathways. In humans, 22 autosomal genes encode for a redundant set of subunits allowing the composition of diverse V-ATPase complexes with specific properties and expression. Sixteen subunits have been linked to human disease.

View Article and Find Full Text PDF

The transmembrane domain recognition complex (TRC) pathway is required for the insertion of C-terminal tail-anchored (TA) proteins into the lipid bilayer of specific intracellular organelles such as the endoplasmic reticulum (ER) membrane. In order to facilitate correct insertion, the recognition complex (consisting of BAG6, GET4 and UBL4A) must first bind to TA proteins and then to GET3 (TRC40, ASNA1), which chaperones the protein to the ER membrane. Subsequently, GET1 (WRB) and CAML form a receptor that enables integration of the TA protein within the lipid bilayer.

View Article and Find Full Text PDF

Background: Deficiency of Conserved Oligomeric Golgi (COG) subunits (COG1-8) is characterized by both N- and O-protein glycosylation defects associated with destabilization and mislocalization of Golgi glycosylation machinery components (COG-CDG). Patients with COG defects present with neurological and multisystem involvement and possible malformation occurrence. Eighteen patients with COG6-CDG (COG6 mutations) were reported to date.

View Article and Find Full Text PDF

Glycosylation is a complex post-translational modification that conveys functional diversity to glycoconjugates. Cell surface glycosylation mediates several biological activities such as induction of the intracellular signaling pathway and pathogen recognition. Red blood cell (RBC) membrane N-glycans determine blood type and influence cell lifespan.

View Article and Find Full Text PDF

Glycosylation is a fundamental post-translational modification of proteins that boosts their structural diversity providing subtle and specialized biological properties and functions. All those genetic diseases due to a defective glycan biosynthesis and attachment to the nascent glycoproteins fall within the wide area of congenital disorders of glycosylation (CDG), mostly causing multisystem involvement. In the present paper, we detailed the unique serum N-glycosylation of a CDG-candidate patient with an unexplained neurological phenotype and liver adenomatosis harboring a recurrent pathogenic variant.

View Article and Find Full Text PDF

Recently, a disorder caused by the heterozygous de novo c.1267C>T (p.R423*) substitution in has been described.

View Article and Find Full Text PDF

We aimed to identify clinical, molecular and radiological correlates of activities of daily living (ADL) in patients with cerebellar atrophy caused by PMM2 mutations (PMM2-CDG), the most frequent congenital disorder of glycosylation. Twenty-six PMM2-CDG patients (12 males; mean age 13 ± 11.1 years) underwent a standardized assessment to measure ADL, ataxia (brief ataxia rating scale, BARS) and phenotype severity (Nijmegen CDG rating scale, NCRS).

View Article and Find Full Text PDF

Purpose: Tear fluid N-Glycome from patients affected with vernal (VKC) and atopic keratoconjunctivitis (AKC) was investigated to identify specific changes in tears and to recognize possible glyco-biomarkers.

Methods: The analysis of the N-glycans was performed using matrix-assisted laser desorption ionization mass spectrometry on single tear samples. Tears from control normal subjects (CTRL), VKC and AKC patients were processed and treated with peptide N-glycosidase F (PNGase F) to deglycosylate N-glycoproteins.

View Article and Find Full Text PDF

Alcaligenes faecalis is the predominant Gram-negative bacterium inhabiting gut-associated lymphoid tissues, Peyer's patches. We previously reported that an A. faecalis lipopolysaccharide (LPS) acted as a weak agonist for Toll-like receptor 4 (TLR4)/myeloid differentiation factor-2 (MD-2) receptor as well as a potent inducer of IgA without excessive inflammation, thus suggesting that A.

View Article and Find Full Text PDF
Article Synopsis
  • Chlorella virus-1 (PBCV-1) is a large dsDNA virus that infects a single-celled green alga and uniquely encodes enzymes for synthesizing its capsid protein’s glycans, which have distinct structures compared to those found in other life forms.
  • Research on PBCV-1 mutations indicated the presence of a glycosyltransferase (GT) with three distinct functional domains: one for β-l-rhamnosyltransferase, one resembling bacterial proteins, and one for methylating rhamnose units.
  • This study identifies two glycosyltransferase activities linked to the viral capsid protein glycan synthesis and shows that one viral protein, A
View Article and Find Full Text PDF

N-glycan analyses may serve uncovering disease-associated biomarkers, as well as for profiling distinctive changes supporting diagnosis of genetic disorders of glycan biosynthesis named congenital disorders of glycosylation (CDG). Strategies based on liquid chromatography (LC) preferentially coupled to electrospray ionization (ESI) - mass spectrometry (MS) have emerged as powerful analytical methods for N-glycan identification and characterization. To enhance detection sensitivity, glycans are commonly labelled with a functional tag prior to LC-MS analysis.

View Article and Find Full Text PDF

Rhizobia are soil bacteria that form important symbiotic associations with legumes, and rhizobial surface polysaccharides, such as K-antigen polysaccharide (KPS) and lipopolysaccharide (LPS), might be important for symbiosis. Previously, we obtained a mutant of HH103, , that does not produce KPS, a homopolysaccharide of a pseudaminic acid derivative, but whose LPS electrophoretic profile was indistinguishable from that of the WT strain. We also previously demonstrated that the HH103 operon is responsible for 5-acetamido-3,5,7,9-tetradeoxy-7-(3-hydroxybutyramido)-l--l--nonulosonic acid [Pse5NAc7(3OHBu)] production and is involved in HH103 KPS and LPS biosynthesis and that an HH103 mutant cannot produce KPS and displays an altered LPS structure.

View Article and Find Full Text PDF

Congenital disorders of glycosylation (CDG) are genetic diseases characterized by deficient synthesis (CDG type I) and/or abnormal processing (CDG type II) of glycan moieties linked to protein and lipids. The impact of the molecular defects on protein glycosylation and in turn on the clinical phenotypes of patients with CDG is not yet understood. ALG12-CDG is due to deficiency of ALG12 α1,6-mannosyltransferase that adds the eighth mannose residue on the dolichol-PP-oligosaccharide precursor in the endoplasmic reticulum.

View Article and Find Full Text PDF

CSF diagnostics has proved to be a formidable testing ground for N-glycoproteomic analysis of neurological diseases. To characterize specific N-glycan profiles of CSF in early and advanced phases of Alzheimer's disease, as well as in lysosomal storage disorders such as Tay-Sachs disease, we set up in our lab a robust and feasible protocol by coupling bioanalytical methods and mass spectrometry analysis.Starting from a few microliters of CSF, after protein denaturation, reduction, and alkylation, N-glycans are released from glycoproteins using the peptide-N-glycosidase F (PNGase F) and purified.

View Article and Find Full Text PDF

One of the strategies adopted for the development of a bivalent conjugate vaccine against invasive nontyphoidal Salmonella consists of linking the O-antigen component of S. Typhimurium and S. Entertidis lipopolysaccharides to the carrier protein CRM, a non-toxic variant of diphtheria toxin.

View Article and Find Full Text PDF

Pathogenic de novo variants in the X-linked gene SLC35A2 encoding the major Golgi-localized UDP-galactose transporter required for proper protein and lipid glycosylation cause a rare type of congenital disorder of glycosylation known as SLC35A2-congenital disorders of glycosylation (CDG; formerly CDG-IIm). To date, 29 unique de novo variants from 32 unrelated individuals have been described in the literature. The majority of affected individuals are primarily characterized by varying degrees of neurological impairments with or without skeletal abnormalities.

View Article and Find Full Text PDF

The chlorovirus chlorella virus 1 (PBCV-1) is a large dsDNA virus that infects the microalga NC64A. Unlike most other viruses, PBCV-1 encodes most, if not all, of the machinery required to glycosylate its major capsid protein (MCP). The structures of the four -linked glycans from the PBCV-1 MCP consist of nonasaccharides, and similar glycans are not found elsewhere in the three domains of life.

View Article and Find Full Text PDF