The adverse outcome pathway (AOP) concept has gained attention as a way to explore the mechanism of chemical toxicity. In this study, quantitative structure-activity relationship (QSAR) models were developed to predict compound activity toward protein targets relevant to molecular initiating events (MIE) upstream of organ-specific toxicities, namely liver steatosis, cholestasis, nephrotoxicity, neural tube closure defects, and cognitive functional defects. Utilizing bioactivity data from the ChEMBL 33 database, various machine learning algorithms, chemical features and methods to assess prediction reliability were compared and applied to develop robust models to predict compound activity.
View Article and Find Full Text PDFThe recent advancements in machine learning and the new availability of large chemical datasets made the development of tools and protocols for computational chemistry a topic of high interest. In this chapter a standard procedure to develop Quantitative Structure-Activity Relationship (QSAR) models was presented and implemented in two freely available and easy-to-use workflows. The first workflow helps the user retrieving chemical data (SMILES) from the web, checking their correctness and curating them to produce consistent and ready-to-use datasets for cheminformatic.
View Article and Find Full Text PDFBiomed Pharmacother
June 2024
Physiologically based kinetic (PBK) modelling offers a mechanistic basis for predicting the pharmaco-/toxicokinetics of compounds and thereby provides critical information for integrating toxicity and exposure data to replace animal testing with in vitro or in silico methods. However, traditional PBK modelling depends on animal and human data, which limits its usefulness for non-animal methods. To address this limitation, high-throughput PBK modelling aims to rely exclusively on in vitro and in silico data for model generation.
View Article and Find Full Text PDFBiomed Pharmacother
May 2024
Background: Serum transaminases, alkaline phosphatase and bilirubin are common parameters used for DILI diagnosis, classification, and prognosis. However, the relevance of clinical examination, histopathology and drug chemical properties have not been fully investigated. As cholestasis is a frequent and complex DILI manifestation, our goal was to investigate the relevance of clinical features and drug properties to stratify drug-induced cholestasis (DIC) patients, and to develop a prognosis model to identify patients at risk and high-concern drugs.
View Article and Find Full Text PDFOxidative stress is the consequence of an abnormal increase of reactive oxygen species (ROS). ROS are generated mainly during the metabolism in both normal and pathological conditions as well as from exposure to xenobiotics. Xenobiotics can, on the one hand, disrupt molecular machinery involved in redox processes and, on the other hand, reduce the effectiveness of the antioxidant activity.
View Article and Find Full Text PDFThe reduction and replacement of in vivo tests have become crucial in terms of resources and animal benefits. The read-across approach reduces the number of substances to be tested, exploiting existing experimental data to predict the properties of untested substances. Currently, several tools have been developed to perform read-across, but other approaches, such as computational workflows, can offer a more flexible and less prescriptive approach.
View Article and Find Full Text PDFDrug-induced cardiotoxicity is a common side effect of drugs in clinical use or under postmarket surveillance and is commonly due to off-target interactions with the cardiac human-ether-a-go-go-related (hERG) potassium channel. Therefore, prioritizing drug candidates based on their hERG blocking potential is a mandatory step in the early preclinical stage of a drug discovery program. Herein, we trained and properly validated 30 ligand-based classifiers of hERG-related cardiotoxicity based on 7,963 curated compounds extracted by the freely accessible repository ChEMBL (version 25).
View Article and Find Full Text PDFThe risk-characterization of chemicals requires the determination of repeated-dose toxicity (RDT). This depends on two main outcomes: the no-observed-adverse-effect level (NOAEL) and the lowest-observed-adverse-effect level (LOAEL). These endpoints are fundamental requirements in several regulatory frameworks, such as the Registration, Evaluation, Authorization and Restriction of Chemicals (REACH) and the European Regulation of 1223/2009 on cosmetics.
View Article and Find Full Text PDFDevelopmental and adult/ageing neurotoxicity is an area needing alternative methods for chemical risk assessment. The formulation of a strategy to screen large numbers of chemicals is highly relevant due to potential exposure to compounds that may have long-term adverse health consequences on the nervous system, leading to neurodegeneration. Adverse Outcome Pathways (AOPs) provide information on relevant molecular initiating events (MIEs) and key events (KEs) that could inform the development of computational alternatives for these complex effects.
View Article and Find Full Text PDFMany regulatory contexts require the evaluation of repeated-dose toxicity (RDT) studies conducted in laboratory animals. The main outcome of RDT studies is the identification of the no observed adverse effect level (NOAEL) and the lowest observed adverse effect level (LOAEL) that are normally used as point of departure for the establishment of health-based guidance values. Since in vivo RDT studies are expensive and time-consuming, in silico approaches could offer a valuable alternative.
View Article and Find Full Text PDFDue to the link with serious adverse health effects, genotoxicity is an important toxicological endpoint in each regulatory setting with respect to human health, including for pharmaceuticals. To this extent, a compound potential to induce gene mutations as well as chromosome damage needs to be addressed. For chromosome damage, i.
View Article and Find Full Text PDFRead-across approaches often remain inconclusive as they do not provide sufficient evidence on a common mode of action across the category members. This read-across case study on thirteen, structurally similar, branched aliphatic carboxylic acids investigates the concept of using human-based new approach methods, such as in vitro and in silico models, to demonstrate biological similarity. Five out of the thirteen analogues have preclinical in vivo studies.
View Article and Find Full Text PDFThe thyroid system plays a major role in the regulation of several physiological processes. The dysregulation of the thyroid system caused by the interference of xenobiotics and contaminants may bring to pathologies like hyper- and hypothyroidism and it has been recently correlated with adverse outcomes leading to cancer, obesity, diabetes and neurodevelopmental disorders. Thyroid disruption can occur at several levels.
View Article and Find Full Text PDFGrowing interest in environmental toxicity assessment using Thamnocephalus platyurus as organism has led to an increased availability of acute toxicity data. Despite this growing interest in tests with this organism, however, to the best of our knowledge there are no computational models to predict the acute toxicity in T. platyurus.
View Article and Find Full Text PDFJ Environ Sci Health C Toxicol Carcinog
May 2021
Cancer is a main concern for human health and there is a need of alternative methodologies to rapidly screen large quantitative of compounds that may represent a toxicological risk. Here a statistical analyses is performed on a benchmark database of experimental Ames data to identify chemical descriptors discriminating mutagens and non-mutagens. A total of 53 activating and deactivating modulators are identified, that flagged respectively a percentage of mutagen and non-mutagen up to 87%.
View Article and Find Full Text PDFBackground: Humans are exposed to tens of thousands of chemical substances that need to be assessed for their potential toxicity. Acute systemic toxicity testing serves as the basis for regulatory hazard classification, labeling, and risk management. However, it is cost- and time-prohibitive to evaluate all new and existing chemicals using traditional rodent acute toxicity tests.
View Article and Find Full Text PDFCarcinogenicity is a crucial endpoint for the safety assessment of chemicals and products. During the last few decades, the development of quantitative structure-activity relationship ((Q)SAR) models has gained importance for regulatory use, in combination with in vitro testing or expert-based reasoning. Several classification models can now predict both human and rat carcinogenicity, but there are few models to quantitatively assess carcinogenicity in humans.
View Article and Find Full Text PDFDevelopmental toxicity refers to the occurrence of adverse effects on a developing organism as a consequence of exposure to hazardous chemicals. The assessment of developmental toxicity has become relevant to the safety assessment process of chemicals. The zebrafish embryo developmental toxicology assay is an emerging test used to screen the teratogenic potential of chemicals and it is proposed as a promising test to replace teratogenic assays with animals.
View Article and Find Full Text PDFRepeated-dose toxicity (RDT) is a critical endpoint for hazard characterization of chemicals and is assessed to derive safe levels of exposure for human health. Here we present the first attempt to model simultaneously no-observed-(adverse)-effect level (NO(A)EL) and lowest-observed-(adverse)-effect level (LO(A)EL). Classification and regression models were derived based on rat sub-chronic repeated dose toxicity data for 327 compounds from the Fraunhofer RepDose database.
View Article and Find Full Text PDFRead-across (RAX) is a popular data-gap filling technique that uses category and analogue approaches to predict toxicological endpoints for a target. Despite its increasing relevance, RAX relies on human expert judgement and lacks a reproducible and automated protocol. It also only relies on structural similarity for identifying the analogues, while other aspects are often neglected.
View Article and Find Full Text PDFThe evaluation of genotoxicity is a fundamental part of the safety assessment of chemicals due to the relevance of the potential health effects of genotoxicants. Among the testing methods available, the in vitro micronucleus assay with mammalian cells is one of the most used and required by regulations targeting several industrial sectors such as the cosmetic industry and food-related sectors. As an alternative to the testing methods, in recent years, lots in silico methods were developed to predict the genotoxicity of chemicals, including models for the Ames mutagenicity test, the in vitro chromosomal aberrations and the in vivo micronucleus assay.
View Article and Find Full Text PDFThe median lethal dose for rodent oral acute toxicity (LD50) is a standard piece of information required to categorize chemicals in terms of the potential hazard posed to human health after acute exposure. The exclusive use of in vivo testing is limited by the time and costs required for performing experiments and by the need to sacrifice a number of animals. (Quantitative) structure-activity relationships [(Q)SAR] proved a valid alternative to reduce and assist in vivo assays for assessing acute toxicological hazard.
View Article and Find Full Text PDF