The freezing step plays a key role in the overall economy of the vacuum freeze-drying of pharmaceuticals, since the nucleation and crystal growth kinetics determine the number and size distribution of the crystals formed. In this work, a new mathematical model of the freezing step of a (bio)pharmaceutical solution is developed and validated. Both nucleation and crystal growth kinetics are modeled and included in a one-dimensional population balance (1D-PBM) that describes, given the product temperature measurement, the evolution of the pore size distribution during freezing.
View Article and Find Full Text PDFThis paper presents a new Process Analytical Technology based on the use of an infrared camera and a mathematical model to estimate the ice crystal size distribution obtained at the end of the freezing stage of a vial freeze-drying process. Both empirical laws and first-principle based equations, already presented in the Literature, may be used to this purpose, if the temperature gradient in the frozen product and the freezing front rate are obtained from the analysis of the thermal images. The resistance of the dried product to vapor flux may be then calculated from the distribution of the ice crystal diameters, thus enabling the use of a one-dimensional model for process simulation and optimization.
View Article and Find Full Text PDFMonitoring a vial freeze-drying process without interfering with product dynamics is a challenging issue. This article presents a novel device constituted by an infrared camera designed to be placed inside the drying chamber, able to monitor the temperature of the vials, very close to that of the product inside. By this way it is possible to estimate the ending point of the primary drying, the heat transfer coefficient to the product (K), and the resistance of the dried product to vapor flux (R).
View Article and Find Full Text PDFThe low operating temperatures employed in atmospheric freeze-drying permits an effective drying of heat sensitive products, without any impairment of their quality attributes. When using power ultrasound, the drying rate can be increased, thus reducing the process duration. However, ultrasound can also affect the product quality.
View Article and Find Full Text PDF