Publications by authors named "Domenico Chiaradia"

We present a novel soft exoskeleton providing active support for hand closing and opening. The main novelty is a different tendon routing, folded laterally on both sides of the hand, and adding clenching forces when the exoskeleton is activated. It improves the stability of the glove, diminishing slippage and detachment of tendons from the hand palm toward the grasping workspace.

View Article and Find Full Text PDF

In this paper, we present a mechanical hand-tracking system with tactile feedback designed for fine manipulation in teleoperation scenarios. Alternative tracking methods based on artificial vision and data gloves have become an asset for virtual reality interaction. Yet, occlusions, lack of precision, and the absence of effective haptic feedback beyond vibrotactile still appear as a limit for teleoperation applications.

View Article and Find Full Text PDF

This paper presents a soft, tendon-driven, robotic glove designed to augment grasp capability and provide rehabilitation assistance for postspinal cord injury patients. The basis of the design is an underactuation approach utilizing postural synergies of the hand to support a large variety of grasps with a single actuator. The glove is lightweight, easy to don, and generates sufficient hand closing force to assist with activities of daily living.

View Article and Find Full Text PDF

Soft exosuits are a promising solution for the assistance and augmentation of human motor abilities in the industrial field, where the use of more symbiotic wearable robots can avoid excessive worker fatigue and improve the quality of the work. One of the challenges in the design of soft exosuits is the choice of the right amount of softness to balance load transfer, ergonomics, and weight. This article presents a cable-driven based soft wrist exosuit for flexion assistance with the use of an ergonomic reinforced glove.

View Article and Find Full Text PDF

The design and control of a new series-viscous-elastic joint are presented. The proposed joint consists of 3D printed parts compressing nonlinear elastic silicone springs. The use of silicone springs is the main novelty of the system; they exhibit internal damping, which enhances system performance allowing a simpler and more stable control.

View Article and Find Full Text PDF

In this paper, we present a prototype of an innovative portable shoulder exoskeleton for human assistance and augmentation. The device provides torques to flexion/extension movements of the shoulder, compensating for gravitational forces, and is passively compliant along the remaining degrees of freedom letting the shoulder moving along them. The novelty of our system is a flexible link, made of a hyper-redundant passive structure, that avoids joint misalignment by adapting to the complex movements of the humerus head, similarly to a soft component.

View Article and Find Full Text PDF

Background: Soft wearable robots (exosuits), being lightweight, ergonomic and low power-demanding, are attractive for a variety of applications, ranging from strength augmentation in industrial scenarios, to medical assistance for people with motor impairments. Understanding how these devices affect the physiology and mechanics of human movements is fundamental for quantifying their benefits and drawbacks, assessing their suitability for different applications and guiding a continuous design refinement.

Methods: We present a novel wearable exosuit for assistance/augmentation of the elbow and introduce a controller that compensates for gravitational forces acting on the limb while allowing the suit to cooperatively move with its wearer.

View Article and Find Full Text PDF