Recently, the role of circulating miRNAs as non-invasive biomarkers for the identification and monitoring of diabetes microvascular complications has emerged. Herein, we aimed to: identify circulating miRNAs differentially expressed in patients with and without diabetic retinopathy (DR); examine their predictive value; and understand their pathogenic impact. Pooled serum samples from randomly selected matched patients with type 2 diabetes, either with or without DR, were used for initial serum miRNA profiling.
View Article and Find Full Text PDFBackground: Insulin resistance in visceral adipose tissue (VAT), skeletal muscle and liver is a prominent feature of most patients with obesity. How this association arises remains poorly understood. The objective of this study was to demonstrate that the decrease in insulin receptor (INSR) expression and insulin signaling in VAT from obese individuals is an early molecular manifestation that might play a crucial role in the cascade of events leading to systemic insulin resistance.
View Article and Find Full Text PDFInsulin resistance (IR), defined as an attenuated biological response to circulating insulin, is a fundamental defect in obesity and type 2 diabetes (T2D), and is also linked to a wide spectrum of pathological conditions, such as non-alcoholic fatty liver disease (NAFLD), cognitive impairment, endothelial dysfunction, chronic kidney disease (CKD), polycystic ovary syndrome (PCOS), and some endocrine tumors, including breast cancer. In obesity, the unbalanced production of pro- and anti-inflammatory adipocytokines can lead to the development of IR and its related metabolic complications, which are potentially reversible through weight-loss programs. The Mediterranean diet (MedDiet), characterized by high consumption of extra-virgin olive oil (EVOO), nuts, red wine, vegetables and other polyphenol-rich elements, has proved to be associated with greater improvement of IR in obese individuals, when compared to other nutritional interventions.
View Article and Find Full Text PDFInt J Environ Res Public Health
December 2019
: Liraglutide is the first glucagon-like peptide-1 receptor agonist (GLP-1 RA) based on the human GLP-1 sequence, with potential weight loss benefits, approved for the treatment of type 2 diabetes (T2D) mellitus. Herein, we aimed to assess the 5-year effectiveness of Liraglutide in the management of weight and glycometabolic control in a Southern Italian cohort of overweight/obese T2D patients, who were naïve to GLP-1 RAs. : Forty overweight or obese patients treated with Liraglutide at doses up to 1.
View Article and Find Full Text PDFBackground: SGLT-2 (sodium-glucose cotransporter-2) inhibitors are a novel class of oral hypoglycemic agents for the management of type 2 diabetes mellitus (T2DM). Herein, we aimed to assess the long-term effectiveness and safety of SGLT-2 inhibitors in a Southern Italy population of subjects affected by T2DM.
Patients And Methods: 408 diabetic patients treated with one of the three SGLT-2 inhibitors currently available in Italy (dapagliflozin, empagliflozin, and canagliflozin), either alone or in combination with other antidiabetic drugs, were retrospectively assessed at baseline, during, and after 18 months of continuous therapy.
Alterations of the immune system are known in eating disorders (EDs), however the importance of cytokine balance in this context has not been clarified. We compared cytokines and growth factors at opposite ends of BMI ranges, in 90 patients classified in relation to BMI, depressive and EDs comorbidities. Serum concentrations of interleukin (IL)-1α, IL-1β, IL-2, IL-4, IL-6, IL-8, IL-10, interferon-gamma (IFN-γ), tumor necrosis factor-alpha (TNF-α), monocyte chemoattractant protein-1 (MCP-1), vascular endothelial growth factor (VEGF), and epidermal growth factor (EGF) were determined by a biochip analyzer (Randox Labs).
View Article and Find Full Text PDFBiosens Bioelectron
September 2019
Evaluation of cellular thermodynamics has recently received a high interest because of its implication in many mechanisms related with function, structure and health of cells. Recent literature reported significant efforts to provide affordable intracellular thermal components of absorption, such as thermal conductivity, to overcome the lack of experimental data. Herein, we provide lines of evidence towards the fabrication of an electronic system, using a rapid thermoelectric technique based on infrared-induced pyroelectric effect for in-vitro cell model characterization.
View Article and Find Full Text PDFBackground: Thiazolidinediones (TZDs), also called glitazones, are five-membered carbon ring molecules commonly used for the management of insulin resistance and type 2 diabetes. Recently, many prospective studies have also documented the impact of these compounds as anti-proliferative agents, though several negative side effects such as hepatotoxicity, water retention and cardiac issues have been reported. In this work, we synthesized twenty-six new TZD analogues where the thiazolidinone moiety is directly connected to an N-heterocyclic ring in order to lower their toxic effects.
View Article and Find Full Text PDFAs a mediator of insulin-regulated gene expression, the FoxO1 transcription factor represents a master regulator of liver glucose metabolism. We previously reported that the high-mobility group AT-hook 1 (HMGA1) protein, a molecular switch for the insulin receptor gene, functions also as a downstream target of the insulin receptor signaling pathway, representing a critical nuclear mediator of insulin function. Here, we investigated whether a functional relationship existed between FoxO1 and HMGA1, which might help explain insulin-mediated gene transcription in the liver.
View Article and Find Full Text PDFPurpose: The forkhead transcription factor (FoxO1) is a master transcriptional regulator of fundamental cellular processes ranging from cell proliferation and differentiation to inflammation and metabolism. However, despite its relevance, the mechanism(s) underlying FoxO1 gene regulation are largely unknown. We have previously shown that the chromatin factor high-mobility group A1 (HMGA1) plays a key role in the transcriptional regulation of glucose-responsive genes, including some that are involved in FoxO1-mediated glucose metabolism.
View Article and Find Full Text PDF