Massive stars are a major source of chemical elements in the cosmos, ejecting freshly produced nuclei through winds and core-collapse supernova explosions into the interstellar medium. Among the material ejected, long-lived radioisotopes, such as Fe (iron) and Al (aluminum), offer unique signs of active nucleosynthesis in our galaxy. There is a long-standing discrepancy between the observed Fe/Al ratio by γ-ray telescopes and predictions from supernova models.
View Article and Find Full Text PDFEur Phys J A Hadron Nucl
March 2023
Unlabelled: Neutron-capture cross sections of neutron-rich nuclei are calculated using a Hauser-Feshbach model when direct experimental cross sections cannot be obtained. A number of codes to perform these calculations exist, and each makes different assumptions about the underlying nuclear physics. We investigated the systematic uncertainty associated with the choice of Hauser-Feshbach code used to calculate the neutron-capture cross section of a short-lived nucleus.
View Article and Find Full Text PDFThe ^{18}O(α,γ)^{22}Ne reaction is an essential part of a reaction chain that produces the ^{22}Ne(α,n)^{25}Mg neutron source for both the weak and main components of the slow neutron-capture process. At temperatures of stellar helium burning, the astrophysically relevant resonances in the ^{18}O(α,γ)^{22}Ne reaction that dominate the reaction rate occur at α particle energies E_{lab} of 472 and 569 keV. However, previous experiments have shown the strengths of these two resonances to be very weak, and only upper limits or partial resonance strengths could be obtained.
View Article and Find Full Text PDFThe interpretation of observations of cooling neutron star crusts in quasipersistent x-ray transients is affected by predictions of the strength of neutrino cooling via crust Urca processes. The strength of crust Urca neutrino cooling depends sensitively on the electron-capture and β-decay ground-state-to-ground-state transition strengths of neutron-rich rare isotopes. Nuclei with a mass number of A=61 are predicted to be among the most abundant in accreted crusts, and the last remaining experimentally undetermined ground-state-to-ground-state transition strength was the β decay of ^{61}V.
View Article and Find Full Text PDFConservation laws are deeply related to any symmetry present in a physical system. Analogously to electrons in atoms exhibiting spin symmetries, it is possible to consider neutrons and protons in the atomic nucleus as projections of a single fermion with an isobaric spin (isospin) of t = 1/2 (ref. ).
View Article and Find Full Text PDFPhys Rev Lett
September 2016
The β-decay intensity of ^{70}Co was measured for the first time using the technique of total absorption spectroscopy. The large β-decay Q value [12.3(3) MeV] offers a rare opportunity to study β-decay properties in a broad energy range.
View Article and Find Full Text PDFNuclear reactions where an exotic nucleus captures a neutron are critical for a wide variety of applications, from energy production and national security, to astrophysical processes, and nucleosynthesis. Neutron capture rates are well constrained near stable isotopes where experimental data are available; however, moving far from the valley of stability, uncertainties grow by orders of magnitude. This is due to the complete lack of experimental constraints, as the direct measurement of a neutron-capture reaction on a short-lived nucleus is extremely challenging.
View Article and Find Full Text PDFA novel technique has been developed, which will open exciting new opportunities for studying the very neutron-rich nuclei involved in the r process. As a proof of principle, the γ spectra from the β decay of ^{76}Ga have been measured with the SuN detector at the National Superconducting Cyclotron Laboratory. The nuclear level density and γ-ray strength function are extracted and used as input to Hauser-Feshbach calculations.
View Article and Find Full Text PDF