Carotenoids are an abundant group of lipid-soluble antioxidants in maize kernels. Maize is a key target crop for carotenoid biofortification focused on using conventional plant breeding in native germplasm of temperate areas traced back partially to traditional cultivars (landraces). In this study, the objectives were to determine the variability of lutein (LUT), zeaxanthin (ZEA), α-cryptoxanthin (αCX), β-cryptoxanthin (βCX), α-carotene (αC), and β-carotene (βC) contents in the grain of 88 accessions of temperate maize from the Croatian genebank, and to evaluate the relationships among the contents of different carotenoids as well as the relationships between kernel color and hardness and carotenoid content.
View Article and Find Full Text PDFLinking biochemistry and genetics of tolerance to osmotic stress is of interest for understanding plant adaptations to unfavorable conditions. The aims of this study were to investigate the variability in responses of panel of elite maize inbred lines to water withholding for stress-related traits through association study and to identify pathways linked to detected associations for better understanding of maize stress responses. Densely genotyped public and expired Plant Variety Protection Certificate (ex-PVP) inbred lines were planted in controlled conditions (16-h/8-h day/night, 25°C, 50% RH) in control (CO) and exposed to 10-day water withholding (WW).
View Article and Find Full Text PDFThe selection of drought-tolerant sour cherry genotypes is essential for developing sustainable fruit production in today's climate-change conditions. The phenotypic heterogenic population of sour cherry Oblačinska, with high and regular yield suitable for mechanical harvesting and industrial processing, is a traditional and predominant cultivar in northern Croatia (Pannonian region) and Serbia commercial orchards. In this context, 2-year old virus-free sour cherry plants of 4 isolated Oblačinska sour cherry ecotypes (OS, 18, D6, and BOR) produced by micropropagation were exposed to severe drought in a greenhouse under semi-controlled conditions to evaluate its photosynthetic intra-varietal variability.
View Article and Find Full Text PDFThe multiple-stress effects on plant physiology and gene expression are being intensively studied lately, primarily in model plants such as Arabidopsis, where the effects of six stressors have simultaneously been documented. In maize, double and triple stress responses are obtaining more attention, such as simultaneous drought and heat or heavy metal exposure, or drought in combination with insect and fungal infestation. To keep up with these challenges, maize natural variation and genetic engineering are exploited.
View Article and Find Full Text PDFGenotype-dependent responses of apples to drought stress were evaluated between commercial and traditional apple cultivars. The results indicate different mechanisms of tolerance to investigated drought stress conditions. Chlorophyll fluorescence induction (OJIP) parameters, chlorophyll and carotenoid content, malondialdehyde (MDA), hydrogen peroxide (HO), proline, phenols and leaf water content (WC) were measured.
View Article and Find Full Text PDFBackground: The seedling stage has received little attention in maize breeding to identify genotypes tolerant to water deficit. The aim of this study is to evaluate incorporation of seed weight (expressed as hundred kernel weight, HKW) as a covariate into genomic association and prediction studies for three biomass traits in a panel of elite inbred lines challenged by water withholding at seedling stage.
Methods: 109 genotyped-by-sequencing (GBS) elite maize inbreds were phenotyped for HKW and planted in controlled conditions (16/8 day/night, 25 °C, 50% RH, 200 µMol/m/s) in trays filled with soil.
Chlorophyll fluorescence (ChlF) parameters are reliable early stress indicators in crops, but their relations with yield are still not clear. The aims of this study are to examine genetic correlations between photosynthetic performance of JIP-test during flowering and grain yield (GY) in maize grown under two heat scenarios in the field environments applying quantitative genetic analysis, and to compare efficiencies of indirect selection for GY through ChlF parameters and genomic selection for GY. The testcrosses of 221 intermated recombinant inbred lines (IRILs) of the IBM population were evaluated in six environments at two geographically distinctive locations in 3 years.
View Article and Find Full Text PDFCharacterizing concentrations of several beneficiary and toxic metals in maize leaves is of importance for ionomic studies and for silage production. The intermated B73 × Mo17 maize population (IBM) was evaluated for concentrations of eight metals (cadmium - Cd, copper - Cu, iron - Fe, potassium - K, magnesium - Mg, manganese - Mn, strontium - Sr and zinc - Zn) in ear-leaf to map quantitative trait loci (QTL) with 2161 molecular markers across the genome. QTL analysis revealed nine significant QTLs for concentrations of Cd, Cu, Fe, K, Mg and Sr combined over two environments.
View Article and Find Full Text PDFChlorophyll fluorescence transient from initial to maximum fluorescence ("P" step) throughout two intermediate steps ("J" and "I") (JIP-test) is considered a reliable early quantitative indicator of stress in plants. The JIP-test is particularly useful for crop plants when applied in variable field environments. The aim of the present study was to conduct a quantitative trait loci (QTL) analysis for nine JIP-test parameters in maize during flowering in four field environments differing in weather conditions.
View Article and Find Full Text PDFDetecting genes that influence biofortification traits in cereal grain could help increase the concentrations of bioavailable mineral elements in crops to solve the global mineral malnutrition problem. The aims of this study were to detect the quantitative trait loci (QTLs) for phosphorus (P), iron (Fe), zinc (Zn), and magnesium (Mg) concentrations in maize grain in a mapping population, as well as QTLs for bioavailable Fe, Zn, and Mg, by precalculating their respective ratios with P. Elemental analysis of grain samples was done by coupled plasma-optical emission spectrometry in 294 F(4) lines of a biparental population taken from field trials of over 3 years.
View Article and Find Full Text PDFDifferent structural and functional changes take place during leaf development. Since some of them are highly connected to oxidative metabolism, regulation of reactive oxygen species (ROS) abundance is required. Most of the reactive oxygen species ROS in plant cells are produced in chloroplasts as a result of highly energetic reactions of photosynthesis.
View Article and Find Full Text PDF