The large interspecific variation in marine mammal skull and dental morphology reflects ecological specialisations to foraging and communication. At the intraspecific level, the drivers of skull shape variation are less well understood, having implications for identifying putative local foraging adaptations and delineating populations and subspecies for taxonomy, systematics, management and conservation. Here, we assess the range-wide intraspecific variation in 71 grey seal skulls by 3D surface scanning, collection of cranial landmarks and geometric morphometric analysis.
View Article and Find Full Text PDFTo study the shape of objects using geometric morphometrics, landmarks are oftentimes collected digitally from a 3D scanned model. The expert may annotate landmarks using software that visualizes the 3D model on a flat screen, and interaction is achieved with a mouse and a keyboard. However, landmark annotation of a 3D model on a 2D display is a tedious process and potentially introduces error due to the perception and interaction limitations of the flat interface.
View Article and Find Full Text PDFBackground: Geometric morphometrics is a powerful approach to capture and quantify morphological shape variation. Both 3D digitizer arms and structured light surface scanners are portable, easy to use, and relatively cheap, which makes these two capturing devices obvious choices for geometric morphometrics. While digitizer arms have been the "gold standard", benefits of having full 3D models are manifold.
View Article and Find Full Text PDF