Given methane hydrates' importance in marine sediments, as well as the widespread use of seabed acoustic-signaling methods in oil and gas exploration, the elastic characterization of these materials is particularly relevant. A greater understanding of the properties governing phonon, sound, and acoustic propagation would help to better classify methane-hydrate deposits, aiding in their discovery. Recently, we have published a new nonequilibrium molecular-dynamics (NEMD) methodology to recreate longitudinal and transverse perturbations, observing their propagation through a crystalline lattice by various metrics, to study the underlying S- and P-wave velocities (achieving excellent agreement with experiment) [Melgar et al.
View Article and Find Full Text PDFα-quartz is one of the most important SiO polymorphs because it is the basis of very common minerals, especially for seabed materials with geoscientific importance. The elastic characterization of these materials is particularly relevant when the properties governing phonon and sound propagation are involved. These studies are especially interesting for oil exploration purposes.
View Article and Find Full Text PDFA comprehensive study of the electronic structure of nanoscale molecular oxide capsules of the type [{M (M ) O } {M' O (μ-X)(μ-Y)(L )} ] is presented, where M,M'=Mo,W, and the bridging ligands X,Y=O,S, carried out by means of density functional theory. Discussion of the electronic structure of these derivatives is focused on the thermodynamic stability of each of the structures, the one having the highest HOMO-LUMO gap being M=W, M'=Mo, X=Y=S. For the most well-known structure M=M'=Mo, X=Y=O, [Mo O ] , the chemical bonding of several ligands to the {Mo O (μ-O) } linker moiety produces negligible effects on its stability, which is evidence of a strong ionic component in these bonds.
View Article and Find Full Text PDFKeplerates are a family of anionic metal oxide spherical capsules containing up to 132 metal atoms and some hundreds of oxygen atoms. These capsules holding a high negative charge of -12 coordinate both mono-anionic and di-anionic ligands thus increasing their charge up to -42, even up to -72, which is compensated by the corresponding counter-cations in the X-ray structures. We present an analysis of the relative importance of several energy terms of the coordinate bond between the capsule and ligands like carbonate, sulphate, sulphite, phosphinate, selenate, and a variety of carboxylates, of which the overriding component is contributed by solvation/de-solvation effects.
View Article and Find Full Text PDFThe formation pathway of a closed spherical cluster [Mo132], starting from a library of building blocks of molybdate anions, has been reported. Electrospray ionization mass spectrometry, Raman spectroscopy, and theoretical studies describe the formation of such a complex cluster from a reduced and acidified aqueous solution of molybdate. Understanding the emergence of such an enormous spherical model cluster may lead to the design of new clusters in the future.
View Article and Find Full Text PDFThe effectiveness of the interactions between various alkylammonium cations and the well-defined spherical Keplerate-type {Mo132} capsule has been tracked by (1)H DOSY NMR methodology, revealing a strong dependence on the self-diffusion coefficient of the cationic guests balanced between the solvated and the plugging situations. Analysis of the data is fully consistent with a two-site exchange regime involving the 20 independent {Mo9O9} receptors of the capsule. Furthermore, quantitative analysis allowed us to determine the stability constants associated with the plugging process of the pores.
View Article and Find Full Text PDF