Crude oil is a primary energy source used for economic expansion across the world. Secondary recovery processes employed by industries to recover oil from oil wells leave behind 70% of the oil trapped in marginal and deleted zones of reservoirs. To recover the oil from depleted zones, microbial enhanced oil recovery (MEOR) tertiary processes were introduced, which involve the production of metabolites from the indigenous microbiome.
View Article and Find Full Text PDFLaboratory evaluation of hyperthermophiles with the potential for Enhanced Oil Recovery (EOR) is often hampered by the difficulties in replicating the in situ growth conditions in the laboratory. In the present investigation, genome analysis was used to gain insights into the metabolic potential of a hyperthermophile to mobilize the residual oil from depleting high-temperature oil reservoirs. Here, we report the 1.
View Article and Find Full Text PDFBiosurfactant producing hypethermophilic microorganisms are essentially required for Microbial Enhanced Oil Recovery (MEOR) from high temperature oil reservoirs (above 90 °C). In the present study, biosurfactant producing Clostridium sp. N-4, optimally growing at 96 °C was isolated from a high temperature oil reservoir.
View Article and Find Full Text PDFBacterial Profile modification is an efficient process which brings the alteration in permeability of the porous media of the reservoir by selective plugging which eventually recover the residual oil. It is an advantageous and feasible method for residual oil recovery from high permeability zones of the reservoir. In this study, indigenous bacterial consortia, TERIJ-188 was developed from Gujarat oil fields.
View Article and Find Full Text PDF