Publications by authors named "Doll-Nikutta K"

Biofilm-associated peri-implant infections pose a major problem in modern medicine. The understanding of biofilm development is hampered by biofilm complexity and the lack of robust clinical models. This study comprehensively characterized the dynamics of early biofilm formation in the transmucosal passage of implant abutments in 12 patients.

View Article and Find Full Text PDF

The colonization of dental implants by oral biofilms causes inflammatory reactions that can ultimately lead to implant loss. Therefore, safety-integrated implant surfaces are under development that aim to detect bacterial attachment at an early stage and subsequently release antibacterial compounds to prevent their accumulation. Since primary oral colonizers ferment carbohydrates leading to local acidification, pH is considered a promising trigger for these surfaces.

View Article and Find Full Text PDF

The formation of pathogenic multispecies biofilms in the human oral cavity can lead to implant-associated infections, which may ultimately result in implant failure. These infections are neither easily detected nor readily treated. Due to high complexity of oral biofilms, detailed mechanisms of the bacterial dysbiotic shift are not yet even fully understood.

View Article and Find Full Text PDF

Due to the high incidence of implant failures, dual functionalization of titanium surfaces with antibacterial and osteogenic agents, like silver (Ag) and strontium (Sr), has gained significant attention in recent years. However, so far, the combined antibacterial and osteoinductive effectiveness of Ag/Sr-based titanium surface coatings has only been analyzed in individual studies. This systematic review aims to evaluate the existing scientific literature regarding the PICOS question "Does dual incorporation of strontium/silver enhances the osteogenic and anti-bacterial characteristics of Ti surfaces ?".

View Article and Find Full Text PDF

Early detection of specific oral bacterial species would enable timely treatment and prevention of certain oral diseases. In this work, we investigated the sensitivity and specificity of functionalized gold nanoparticles for plasmonic sensing of oral bacteria. This approach is based on the aggregation of positively charged gold nanoparticles on the negatively charged bacteria surface and the corresponding localized surface plasmon resonance (LSPR) shift.

View Article and Find Full Text PDF

Purpose: Acidification by bacterial biofilms at the bracket/tooth interface is one of the most common problems in fixed orthodontic treatments, which can lead to white spot lesions (WSL) and caries. As lingual brackets were shown to exhibit reduced WSL formation clinically, the aim of this in situ study was to compare initial intraoral biofilm formation and acidification on bracket-like specimens placed buccally and palatally in the upper jaw as a possible cause for this observation.

Methods: Intraoral biofilm was collected from splints equipped with buccally and palatally exposed test specimens, which were worn by 12 volunteers for a total of 48 h.

View Article and Find Full Text PDF

Staphylococcus aureus biofilm-associated infections are a common complication in modern medicine. Due to inherent resilience of biofilms to antibiotics and the rising number of antibiotic-resistant bacterial strains, new treatment options are required. For this purpose, ultrapure, spherical silver-gold-alloy nanoparticles with homogenous elemental distribution were synthesized by laser ablation in liquids and analyzed for their antibacterial activity on different stages of S.

View Article and Find Full Text PDF

Bacterial adhesion to dental implants is the onset for the development of pathological biofilms. Reliable characterization of this initial process is the basis towards the development of anti-biofilm strategies. In the present study, single-cell force spectroscopy (SCFS), by means of an atomic force microscope connected to a microfluidic pressure control system (FluidFM), was used to comparably measure adhesion forces of different oral bacteria within a similar experimental setup to the common implant material titanium.

View Article and Find Full Text PDF