A large body of evidence, replicated in many mouse models of Alzheimer's disease (AD), supports the therapeutic efficacy of the oral mammalian target of rapamycin inhibitors (mTOR-Is). Our preliminary data show that intracerebroventricular (ICV) administration of everolimus (RAD001) soon after clinical onset greatly diminished cognitive impairment and the intracellular beta amyloid and neurofibrillary tangle load. However, RAD001 shows >90% degradation after 7 days in solution at body temperature, thus hampering the development of proper therapeutic regimens for patients.
View Article and Find Full Text PDFBackground: Lesch-Nyhan disease (LND; OMIM 300322), caused by virtually absent hypoxanthine-guanine phosphoribosyltransferase activity, in its classic form is characterised by hyperuricemia, variable cognitive impairment, severe motor disorder and a characteristic behavioural disorder (Lesch-Nyhan Behavior, LNB), typically described as self-injurious behavior (SIB) and "self-mutilation." This work focuses on the latter aspect with the aim of exploring and broadening it.
Methods: The participant observation method was used to follow three children diagnosed with LND individually, in different contexts of daily life, always with their usual restraints and in the presence of a caregiver.
Congenital disorder of glycosylation (CDG) type Ia is a multisystem disorder that occurs due to mutations in the phosphomannomutase 2 (PMM2) gene, which encodes for an enzyme involved in the N‑glycosylation pathway. Mutated PMM2 leads to the reduced conversion of mannose‑6‑P to mannose‑1‑P, which results in low concentration levels of guanosine 5'‑diphospho‑D‑mannose (GDP‑Man), a nucleotide‑activated sugar essential for the construction of protein oligosaccharide chains. In the present study, an in vitro therapeutic approach was used, based on GDP‑Man‑loaded poly (D,L‑lactide‑co‑glycolide) (PLGA) nanoparticles (NPs), which were used to treat CDG‑Ia fibroblast cultures, thus bypassing the glycosylation pathway reaction catalysed by PMM2.
View Article and Find Full Text PDFThe discovery that mammalian target of rapamycin (mTOR) inhibition increases lifespan in mice and restores/delays many aging phenotypes has led to the identification of a novel potential therapeutic target for the treatment of Alzheimer's disease (AD). Among mTOR inhibitors, everolimus, which has been developed to improve the pharmacokinetic characteristics of rapamycin, has been extensively profiled in preclinical and clinical studies as anticancer and immunosuppressive agent, but no information is available about its potential effects on neurodegenerative disorders. Using a reliable mouse model of AD (3 × Tg-AD mice), we explored whether short-term treatment with everolimus injected directly into the brain by osmotic pumps was able to modify AD-like pathology with low impact on peripheral organs.
View Article and Find Full Text PDFTuberous sclerosis complex (TSC) is an autosomal dominant genetic disorder caused by mutations in either of two genes, TSC1 or TSC2, resulting in the constitutive activation of the mammalian target of rapamycin complex 1 (mTORC1). mTOR inhibitors are now considered the treatment of choice for TSC disease. A major pathological feature of TSC is the development of subependymal giant cell astrocytomas (SEGAs) in the brain.
View Article and Find Full Text PDFGlycogenosis type II, or Pompe Disease, is a lysosomal storage disease caused by the deficiency of acid alpha-glucosidase (GAA), leading to glycogen accumulation in muscles. A recombinant human GAA (rhGAA, Myozyme®) is currently used for enzyme replacement therapy. Despite its efficacy in most of patients, some of them show a diminished response to the treatment with rapidly progressive clinical deterioration, due to immuno-mediated enzyme inactivation.
View Article and Find Full Text PDFJ Chromatogr B Analyt Technol Biomed Life Sci
March 2015
Isotopic internal standards are increasingly frequent in LC-MS analysis to control biological matrix effects in the quantitation of immunosuppressant drugs, such as everolimus (RAD001). Here we present the evaluation of a LC-MS method, exploiting [(13)C2D4]RAD001 as internal standard, for preclinical determination of RAD001 in mice brain tissue. Samples were purified by solid phase extraction.
View Article and Find Full Text PDFBiochem Biophys Res Commun
November 2013
Lesch-Nyhan disease (LND) is a severe and incurable X-linked genetic syndrome caused by the deficiency of hypoxanthine-guanine phosphoribosyltransferase (HPRT), resulting in severe alterations of central nervous system, hyperuricemia and subsequent impaired renal functions. Therapeutic options consist in supportive care and treatments of complications, but the disease remains largely untreatable. Enzyme replacement of the malfunctioning cytosolic protein might represent a possible therapeutic approach for the LND treatment.
View Article and Find Full Text PDFNucleosides Nucleotides Nucleic Acids
March 2014
Unlabelled: BACKGROUND, RATIONALE, AND METHODS: Lesch-Nyhan disease is a rare, X-linked disorder due to hypoxanthine phosphoribosyltransferase deficiency. To evaluate reported benefit on mood and behavior obtained by the administration of S-adenosyl-L-methionine in this condition, we developed 2 quantitative evaluation tools, and used them to assess the effects of the drug in our population: the weekly questionnaire and the resistance to self-injurious behavior test. We performed an open-label, dose-escalation trial of the drug on 14 patients.
View Article and Find Full Text PDFNanomedicine is certainly one of the scientific and technological challenges of the coming years. In particular, biodegradable nanoparticles formulated from poly (D,L-lactide-co-glycolide) (PLGA) have been extensively investigated for sustained and targeted delivery of different agents, including recombinant proteins, plasmid DNA, and low molecular weight compounds. PLGA NPs present some very attractive properties such as biodegradability and biocompatibility, protection of drug from degradation, possibility of sustained release, and the possibility to modify surface properties to target nanoparticles to specific organs or cells.
View Article and Find Full Text PDFPurpose: To evaluate retrospectively the efficiency of our rehabilitation programme for patients with Prader-Willi Syndrome. In total, 49 patients were examined, 21 female and 28 male, the youngest in their late teens. Prader-Willi syndrome is generally characterised by cognitive impairment, behavioural abnormalities, and hyperphagia.
View Article and Find Full Text PDFThe presence of the blood-brain barrier (BBB) makes extremely difficult to develop efficacious strategies for targeting contrast agents and delivering drugs inside the Central Nervous System (CNS). To overcome this drawback, several kinds of CNS-targeted nanoparticles (NPs) have been developed. In particular, we proposed poly-lactide-co-glycolide (PLGA) NPs engineered with a simil-opioid glycopeptide (g7), which have already proved to be a promising tool for achieving a successful brain targeting after i.
View Article and Find Full Text PDFBackground: Lesch-Nyhan (LND) disease is an inborn error of purine metabolism which results from deficiency of the activity of hypoxanthine-guanine phosphoribosyltransferase (HPRT). In the classical form of the disease the activity of the enzyme is completely deficient and the patient has cognitive impairment, spasticity, dystonia and self-injurious behaviour, as well as elevated concentrations of uric acid in blood and urine that leads to consequences such as nephropathy, urinary tract calculi and tophaceous gout. There are disease variants without self-injurious behaviour.
View Article and Find Full Text PDFThe objective of this study was to estimate the prevalence of hearing impairment in four genetically isolated Italian villages (Carlantino, Campora, Gioi-Cardile, and Stoccareddo), 1682 subjects were recruited from all the individuals participating in a multidisciplinary study. They underwent otoscopy and pure-tone audiometry and completed a questionnaire. The audiological data show that the percentage of impaired people increases with age and in particular becomes relevant aged over 40.
View Article and Find Full Text PDFIn an effort to develop an encapsulated cell-based system to deliver arylsulfatase A (ARSA) to the central nervous system of metachromatic leukodystrophy (MLD) patients, we engineered C2C12 mouse myoblasts with a retroviral vector containing a full-length human ARSA cDNA and evaluated the efficacy of the recombinant secreted enzyme to revert the MLD phenotype in oligodendrocytes (OL) of the As2-/- mouse model. After transduction, C2C12 cells showed a fifteen-fold increase in intracellular ARSA activity and five-fold increase in ARSA secretion. The secreted hARSA collected from transduced cells encapsulated in polyether-sulfone polymer, was taken up by enzyme-deficient OL derived from MLD mice and normally sorted to the lysosomal compartment, where transferred enzyme reached 80% of physiological levels, restoring the metabolism of sulfatide.
View Article and Find Full Text PDFBackground: Demyelination in globoid cell leukodystrophy (GLD) is due to a deficiency of galactocerebrosidase (GALC) activity. Up to now, in vivo brain viral gene transfer of GALC showed modest impact on disease development in Twitcher mice, an animal model for GLD. Lentiviral vectors, which are highly efficient to transfer the expression of therapeutic genes in neurons and glial cells, have not been evaluated for direct cerebral therapy in GLD mice.
View Article and Find Full Text PDFTwitcher (GALC(twi/twi)) is the murine model of globoid cell leukodystrophy (GLD or Krabbe disease), a disease caused by mutations of the lysosomal enzyme galactocerebrosidase (GALC). To verify the therapeutic potential on twitcher of neural stem/progenitor cells (NSPC), we transduced them with a GALC lentiviral vector. Brain injection of NSPC-GALC increased survival of GALC(twi/twi) from 36.
View Article and Find Full Text PDFTherapy for neurodegenerative lysosomal Tay-Sachs (TS) disease requires active hexosaminidase (Hex) A production in the central nervous system and an efficient therapeutic approach that can act faster than human disease progression. We combined the efficacy of a non-replicating Herpes simplex vector encoding for the Hex A alpha-subunit (HSV-T0alphaHex) and the anatomic structure of the brain internal capsule to distribute the missing enzyme optimally. With this gene transfer strategy, for the first time, we re-established the Hex A activity and totally removed the GM2 ganglioside storage in both injected and controlateral hemispheres, in the cerebellum and spinal cord of TS animal model in the span of one month's treatment.
View Article and Find Full Text PDFWe have used magnetic resonance imaging (MRI) and motor evoked potentials (MEPs) for monitoring disease progression within the CNS of the Twitcher mouse, the murine model for globoid cell leukodystrophy (GLD). GLD is a lysosomal storage disorder, resulting from galactocerebrosidase deficiency, causing central and peripheral myelin impairment, leading to death, usually during early infancy. Neuroradiological, electrophysiological, and pathological parameters of myelin maturation were evaluated in Twitcher mice between postnatal days 20 and 45.
View Article and Find Full Text PDFStable genetic modification of adult stem cells is fundamental for both developmental studies and therapeutic purposes. Using in vivo marking studies, we showed that injection of lentiviral vectors (LVs) into the subventricular zone of the adult mouse brain enables efficient gene transfer into long-term self-renewing neural precursors and steady, robust vector expression in their neuronal progeny throughout the subventricular zone and its rostral extension, up to the olfactory bulb. By clonal and population analysis in culture, we proved that in vivo-marked neural precursors display self-renewal and multipotency, two essential characteristics of neural stem cells (NSCs).
View Article and Find Full Text PDFGene therapy of galactocerebrosidase (GALC) deficient mice (Twitcher mutants) requires a fast and sensitive assay to detect transduced cells in vitro and in vivo. We have developed a new rapid histochemical method that specifically detects GALC activity in situ in neural cells using 5-Br-3Cl-beta-galactopiranoside (X-Gal) in the presence of taurodeoxycholic and oleic acids to enhance suspension of the substrate at low pH. Using this method, we observed robust X-Gal staining in diverse neuronal populations and interfascicular oligodendrocytes in sections from normal mouse brain.
View Article and Find Full Text PDFThe therapeutic potential of bone marrow-derived stromal cells for the therapy of Tay-Sachs disease is primarily related to the restoration of their own GM2 ganglioside storage. With this aim, we produced bone marrow-derived stromal cells from the adult Tay-Sachs animal model and transduced them with a retroviral vector encoding for the alpha-subunit of the lysosomal enzyme beta-hexosaminidase A (E.C.
View Article and Find Full Text PDF