In the roll bending process, the rolling force acting on the roller shafts is one of the most important parameters since, on the one hand, it determines the process settings including the pre-loading, and, on the other hand, its distribution and size may affect the integrity of both the bending system and the final product. In this study, the three-roller bending process was modeled using a two-dimensional plane-strain finite element method, and the rolling force was determined as a function of plate thickness, upper roller diameter, and yield strength for various API steel grades. Based on the numerical simulation results, a critical bending angle of 41° was identified and the rolling systems were divided into two categories, of less than or equal to, and greater than 41°, and an analytical model for predicting the maximum rolling force was developed for each category.
View Article and Find Full Text PDFMany industries such as shipbuilding require steel bending plates in a wide range of radii, thus bending machines are often designed and produced on a custom basis in shipyards. From a design perspective, however, the bending force and the radius of the bending plate as a function of vertical displacement of the upper roller must be known. In this paper, a hybrid numerical-analytical approach is proposed to investigate the three-roller bending process for two plates of steel used in the naval industry.
View Article and Find Full Text PDF