Tin-lead (Sn-Pb) perovskite solar cells (PSCs) hold considerable potential for achieving efficiencies near the Shockley-Queisser (S-Q) limit. Notably, the inverted structure stands as the preferred fabrication method for the most efficient Sn-Pb PSCs. In this regard, it is imperative to implement a strategic customization of the hole selective layer to facilitate carrier extraction and refine the quality of perovskite films, which requires effective hole selectivity and favorable interactions with Sn-Pb perovskites.
View Article and Find Full Text PDFTwo new Y6 derivatives of symmetrical YBO-2O and asymmetrical YBO-FO nonfullerene acceptors (NFAs) are prepared with a simplified synthetic procedure by incorporating octyl and fluorine substituents onto the terminal 2-(3-oxo-2,3-dihydro-1H-inden-1-ylidene)malononitrile (INCN) moiety. By moving the alkyl substituents on the Y6 core to the terminal INCN moiety, the lowest unoccupied molecular orbital of the YBO NFAs increases without decreasing solubility, resulting in high open-circuit voltages of the devices. Molecular dynamics simulation shows that YBO-2O/-FO preferentially form core-core and terminal-terminal dimeric interactions, demonstrating their tighter packing structure and higher electron mobility than Y6, which is consistent with 2D grazing incidence X-ray scattering and space charge limited current measurements.
View Article and Find Full Text PDFTo date, the light emitting diode (LED) based halide perovskite was rapidly developed due to the outstanding property of perovskite materials. However, the blue perovskite LEDs based on the bulk halide perovskites have been rarely researched and showed low efficiencies. The bulk blue perovskite LEDs suffered from insufficient coverage on the substrate due to the low solubility of the inorganic Cl sources or damaged by the structural instability with participation of organic cations.
View Article and Find Full Text PDFAnti- and de-icing heating systems are used to both prevent the accumulation of ice and to remove it and thus avoid damage. Typically, anti- and de-icing heating systems employ carbon-based materials, metal frames, and bulky ceramic structures. These structures generally lead to the loss of radio-frequency (RF) signals and are also relatively heavy.
View Article and Find Full Text PDF