In the case of structureless bosons, cooled down to low temperatures, the absorption of electromagnetic waves by their Bose-Einstein condensate is usually forbidden due to the momentum and energy conservation laws: the phase velocity of the collective modes of the condensate called bogolons is sufficiently lower than the speed of light. Thus, only the light scattering processes persist. However, the situation might be different in the case of composite bosons or the bosons with an internal structure.
View Article and Find Full Text PDFWe report on a peculiar propagation of bosons loaded by a short Laguerre-Gaussian pulse in a nearly flat band of a lattice potential. Taking a system of exciton polaritons in a kagome lattice as an example, we show that an initially localized condensate propagates in a specific direction in space, if anisotropy is taken into account. This propagation consists of quantum jumps, collapses, and revivals of the whole compact states, and it persists given any direction of anisotropy.
View Article and Find Full Text PDF