Thoracic aortic aneurysm (TAA) is a life-threatening vascular disease frequently associated with underlying genetic causes. An inadequate understanding of human TAA pathogenesis highlights the need for better disease models. Here, we established a functional human TAA model in an animal host by combining human induced pluripotent stem cells (hiPSCs), bioengineered vascular grafts (BVGs), and gene editing.
View Article and Find Full Text PDFArterioscler Thromb Vasc Biol
December 2023
Background: Although single-cell RNA-sequencing is commonly applied to dissect the heterogeneity in human tissues, it involves the preparation of single-cell suspensions via cell dissociation, causing loss of spatial information. In this study, we employed high-resolution single-cell transcriptome imaging to reveal rare smooth muscle cell (SMC) types in human thoracic aortic aneurysm (TAA) tissue samples.
Methods: Single-molecule spatial distribution of transcripts from 140 genes was analyzed in fresh-frozen human TAA samples with region and sex-matched controls.
Arterioscler Thromb Vasc Biol
August 2022
Thoracic aortic aneurysm is a life-threatening condition caused by weakening of the thoracic aorta wall, often developing silently until dissection or rupture occurs. Despite substantial efforts in the past decade, there have been no significant therapeutic advances to prevent or clinically manage diverse forms of thoracic aortic aneurysm and dissection with the only effective treatment being surgical repair. There is an urgent need to understand intra- and inter-aneurysmal heterogeneity underlying thoracic aortic aneurysm and dissection pathogenesis.
View Article and Find Full Text PDFTo understand repair processes, it is critical to identify the molecular foundations underlying progenitor diversity and plasticity. Upon injury to the neonatal cerebellum, a normally gliogenic -expressing progenitor (NEP) in the Bergmann glia layer (BgL) undergoes adaptive reprograming to restore granule cell production. However, the cellular states and genes regulating the NEP fate switch are unknown.
View Article and Find Full Text PDFBackground: Loeys-Dietz syndrome (LDS) is an inherited disorder predisposing individuals to thoracic aortic aneurysm and dissection. Currently, there are no medical treatments except surgical resection. Although the genetic basis of LDS is well-understood, molecular mechanisms underlying the disease remain elusive, impeding the development of a therapeutic strategy.
View Article and Find Full Text PDFQuiescent neural stem cells (NSCs) in the adult mouse ventricular-subventricular zone (V-SVZ) undergo activation to generate neurons and some glia. Here we show that platelet-derived growth factor receptor beta (PDGFRβ) is expressed by adult V-SVZ NSCs that generate olfactory bulb interneurons and glia. Selective deletion of PDGFRβ in adult V-SVZ NSCs leads to their release from quiescence, uncovering gliogenic domains for different glial cell types.
View Article and Find Full Text PDFIn the adult ventricular-subventricular zone (V-SVZ), neural stem cells (NSCs) generate new olfactory bulb (OB) neurons and glia throughout life. To map adult neuronal lineage progression, we profiled >56,000 V-SVZ and OB cells by single-cell RNA sequencing (scRNA-seq). Our analyses reveal the molecular diversity of OB neurons, including fate-mapped neurons, lineage progression dynamics, and an NSC intermediate enriched for Notum, which encodes a secreted WNT antagonist.
View Article and Find Full Text PDFThe ventricular-subventricular zone (V-SVZ) harbors adult neural stem cells. V-SVZ neural stem cells exhibit features of astrocytes, have a regional identity, and depending on their location in the lateral or septal wall of the lateral ventricle, generate different types of neuronal and glial progeny. We performed large-scale single-cell RNA sequencing to provide a molecular atlas of cells from the lateral and septal adult V-SVZ of male and female mice.
View Article and Find Full Text PDFAlthough the intracellular molecular clocks that regulate circadian (~24 h) behavioral rhythms are well understood, it remains unclear how molecular clock information is transduced into rhythmic neuronal activity that in turn drives behavioral rhythms. To identify potential clock outputs, the authors generated expression profiles from a homogeneous population of purified pacemaker neurons (LN(v)s) from wild-type and clock mutant Drosophila. They identified a group of genes with enriched expression in LN(v)s and a second group of genes rhythmically expressed in LN(v)s in a clock-dependent manner.
View Article and Find Full Text PDFBackground: Circadian (∼24 hr) rhythms offer one of the best examples of how gene expression is tied to behavior. Circadian pacemaker neurons contain molecular clocks that control 24 hr rhythms in gene expression that in turn regulate electrical activity rhythms to control behavior.
Results: Here we demonstrate the inverse relationship: there are broad transcriptional changes in Drosophila clock neurons (LN(v)s) in response to altered electrical activity, including a large set of circadian genes.
© LitMetric 2025. All rights reserved.