Publications by authors named "Doerder F"

Mitochondrial cox1 689 bp barcodes are routinely used for identification of Tetrahymena species. Here, we examine whether two shorter nuclear sequences, the 5.8S rRNA gene region and the intergenic region between H3 and H4 histone genes, might also be useful either singly or in combination with each other or cox1.

View Article and Find Full Text PDF

Tetrahymena mitochondrial cox1 barcodes and nuclear SSUrRNA sequences are particularly effective at distinguishing among its many cryptic species. In a project to learn more about Tetrahymena natural history, the majority of >1,000 Tetrahymena-like fresh water isolates were assigned to established Tetrahymena species with the remaining assigned to 37 new species of Tetrahymena, nine new species of Dexiostoma and 12 new species of Glaucoma. Phylogenetically, all but three Tetrahymena species belong to the well-established "australis" or "borealis" clades; the minority forms a divergent "paravorax" clade.

View Article and Find Full Text PDF

A ciliate protozoan was discovered whose presence coincided with a rapid decrease in the viability (i.e. ability to close valves) of glochidia of the freshwater mussel Lampsilis siliquoidea.

View Article and Find Full Text PDF

Each of the seven mating types of Tetrahymena thermophila is determined by a pair of large genes, MTA and MTB, whose expression peaks at early conjugation. Each protein consists of a mating-type specific domain and a common transmembrane domain. To assess variation in natural populations, regions of both domains from wild isolates expressing mating types V and VII were analyzed.

View Article and Find Full Text PDF

Background: By segregating somatic and germinal functions into large, compound macronuclei and small diploid micronuclei, respectively, ciliates can explore sexuality in ways other eukaryotes cannot. Sex, for instance, is not for reproduction but for nuclear replacement in the two cells temporarily joined in conjugation. With equal contributions from both conjugants, there is no cost of sex which theory predicts should favor asexuality.

View Article and Find Full Text PDF

The biogeography of microbial eukaryotes has long been debated, but few phylogeographic data have been available to assess whether protists tend to have ubiquitous or endemic distributions. We addressed this issue in the ciliate Tetrahymena thermophila, a highly successful model system in cell and molecular biology. We found that this species has a distribution that is restricted to the Eastern United States, with high diversity in the northeast and low diversity across the rest of its distribution.

View Article and Find Full Text PDF

Tetrahymena typically is found in freshwater lakes, ponds, and streams in association with submerged or emergent vegetation. The genus consists of numerous breeding species with micronuclei and many asexual species without micronuclei. In summer months when most populations are at their peak, 30-50% of water samples may yield one or more species of Tetrahymena.

View Article and Find Full Text PDF

The genus Tetrahymena is defined on the basis of a four-part oral structure composed of an undulating membrane and three membranelles. It is a monophyletic genus with 41 named species and numerous unnamed species, many of which are morphologically indistinguishable. Nuclear small subunit rRNA and mitochondrial cytochrome c oxidase subunit 1 sequences indicate two major clades, a "borealis" clade of less closely related species and an "australis" clade of more closely related species that correlate to differences in mating-type determination and frequency of amicronucleates.

View Article and Find Full Text PDF

DNA barcoding using the mitochondrial cytochromecoxidase subunit I (cox-1) gene has recently gained popularity as a tool for species identification of a variety of taxa. The primary objective of our research was to explore the efficacy of using cox-1 barcoding for species identification within the genusTetrahymena. We first increased intraspecific sampling forTetrahymena canadensis, Tetrahymena hegewischi, Tetrahymena pyriformis, Tetrahymena rostrata, Tetrahymena thermophila, and Tetrahymena tropicalis.

View Article and Find Full Text PDF

High levels of synonymous substitutions among alleles of the surface antigen SerH led to the hypothesis that Tetrahymena thermophila has a tremendously large effective population size, one that is greater than estimated for many prokaryotes (Lynch, M., and J. S.

View Article and Find Full Text PDF

The SerH locus of Tetrahymena thermophila is one of several paralogous loci with genes encoding variants of the major cell surface protein known as the immobilization antigen (i-ag). The locus is highly polymorphic, raising questions concerning functional equivalency and selective forces acting on its multiple alleles. Here, we compare the sequences and expression of SerH1, SerH3, SerH4, SerH5, and SerH6.

View Article and Find Full Text PDF

In Tetrahymena thermophila mating type alleles specify temperature sensitive frequency distributions of multiple mating types. A-like alleles specify mating types I, II, III, V and VI, whereas B-like alleles specify mating types II through VII. We have characterized the mating type distributions specified by several A- and B-like genotypes segregated by genomic exclusion from cells isolated from a pond in northwestern Pennsylvania.

View Article and Find Full Text PDF

In the pond ciliate Tetrahymena thermophila, expression of genes encoding variant forms of the cell surface immobilization antigen (i-ag) is regulated by environmental conditions. Multiple isoforms of the L i-ags are found on the surface of cells grown at <20 degrees C as well as on the surface of rseC mutants which express SerL genes constitutively. Five cDNAs encoding variant L i-ags of rseC were sequenced and their expression studied.

View Article and Find Full Text PDF

In ciliates, variable surface protein genes encoding the immobilization antigen (-ag) are expressed under different environmental conditions, including temperature and salt stress. These i-ags are GPI-linked and coat the entire external surface of the cell, including the cilia. In Tetrahymena thermophila-ag in natural isolates is the result of dominant epistasis masking the expression of the H i-ag ordinarily expressed at 20-36 degrees C.

View Article and Find Full Text PDF

Macronuclear development in ciliates is characterized by extensive rearrangement of genetic material, including sequence elimination, chromosome fragmentation and telomere addition. Intragenic recombination is a relatively rare, but evolutionarily important phenomenon occurring in mitosis and meiosis in a wide variety of organisms. Here, we show that high frequency intragenic recombination, on the order of 30%, occurs in the developing amitotic macronucleus of the ciliate Tetrahymena thermophila.

View Article and Find Full Text PDF

The complete sequences of four TBE1 transposons from Oxytricha fallax and O. trifallax are presented and analyzed. Although two TBE1s are 98% identical to each other at the nucleotide level, the remaining two TBE1s are only 90% identical both to each other and to the other two.

View Article and Find Full Text PDF

The temperature-regulated SerH1 gene coding for an immunodominant surface glycoprotein (i-Ag H1) of Tetrahymena thermophila has been sequenced. The gene is reproducibly rearranged during macronuclear development and steady state mRNA levels are present at < 36 degrees C. The deduced i-Ag H1 amino acid (aa) sequence is rich in Ser, Thr and Cys, and contains three periods each consisting of 85 aa punctuated by eight Cys with the general formula, CX6CX17CX2CX18CX2CX11CX2CX19 (where X = any aa).

View Article and Find Full Text PDF

In ciliate protists, sex involves the temporary joining of two cells of compatible mating type, followed by meiosis and exchange of gametic nuclei between conjugants. Reproduction is by asexual binary fission following conjugation. For the many ciliates with fixed multiple mating types, frequency-dependent sex-ratio theory predicts equal frequencies of mating types, if sex is common in nature.

View Article and Find Full Text PDF

The Ser genes of Tetrahymena thermophila specify alternative forms of a major cell surface glycoprotein, the immobilization or i-antigen (i-ag). Regulation of i-ag expression assures that at least one i-ag gene is expressed at all times. To learn more about the regulatory system and the possible role of i-ag itself, we studied SerH3-ts1, a temperature-sensitive allele of the temperature-regulated SerH3 gene normally expressed from 20-36 degrees.

View Article and Find Full Text PDF

The transposon-like elements TBE1, Tec1, and Tec2 of hypotrichous ciliated protozoa appear to encode a protein that belongs to the IS630-Tc1 family of transposases. The Anabaena IS895 transposase also is placed in this family. We note that most family members transpose into the dinucleotide target, TA, and that members with eukaryotic hosts have a tendency for somatic excision that is carried to an extreme by the ciliate elements.

View Article and Find Full Text PDF

In ciliates, only one of the alternative forms of the immunodominant membrane glycoprotein usually coats the external surface of the cell. Such mutual exclusion is regulated at the pretranslational level by mechanisms that result in the expression of a single protein gene. In the holotrich Tetrahymena thermophila five alternative cell surface immobilization proteins (i-antigens) are expressed under different conditions of temperature (L, H, T) and culture media (I, S).

View Article and Find Full Text PDF

The four immobilization antigens controlled by the SerH locus in Tetrahymena thermophila have been isolated and partially characterized (Doerder, F.P. & Berkowitz, M.

View Article and Find Full Text PDF

In the ciliate protist Tetrahymena thermophila the L, H, T, I, S, M and P cell surface proteins (immobilization antigens) are expressed under different conditions of temperature (L, H, T), culture media (I, S), and mutant genotype (M, P). Immunoblot and autoradiographic studies using antisera to purified protein show that the molecular weights of these proteins range from 25,000 to 59,000. The H, T, S, M and P antigens are recognized as single polypeptides, whereas L, I, and one allelic form of T each appear to consist of a family of polypeptides.

View Article and Find Full Text PDF

Genes at the SerH locus of the ciliated protist Tetrahymena thermophila specify the major (H) surface protein on cells grown at 20-36 degrees. Alternative proteins L, T, S and I are expressed under different conditions of temperature and culture media. Mutants unable to express SerH genes were examined for expression of these proteins, also called immobilization or i-antigens, at both H and non-H conditions.

View Article and Find Full Text PDF

During vegetative, asexual reproduction in heterozygous Tetrahymena thermophila, the macronucleus divides amitotically to produce clonal lineages that express either one or the other allele but not both. Because such phenotypic assortment has been described for every locus studied, its mechanism has important implications concerning the development and structure of the macronucleus. The primary tools to study assortment are Rf, the rate at which subclones come to express a single allele stably, and the output ratio, the ratio of assortee classes.

View Article and Find Full Text PDF