Publications by authors named "Doebber T"

A series of benzimidazolone carboxylic acids and oxazolidinediones were designed and synthesized in search of selective PPARγ modulators (SPPARγMs) as potential therapeutic agents for the treatment of type II diabetes mellitus (T2DM) with improved safety profiles relative to rosiglitazone and pioglitazone, the currently marketed PPARγ full agonist drugs. Structure-activity relationships of these potent and highly selective SPPARγMs were studied with a focus on their unique profiles as partial agonists or modulators. A variety of methods, such as X-ray crystallographic analysis, PPARγ transactivation coactivator profiling, gene expression profiling, and mutagenesis studies, were employed to reveal the differential interactions of these new analogues with PPARγ receptor in comparison to full agonists.

View Article and Find Full Text PDF

A new series of thiazole-substituted 1,1,1,3,3,3-hexafluoro-2-propanols were prepared and evaluated as malonyl-CoA decarboxylase (MCD) inhibitors. Key analogs caused dose-dependent decreases in food intake and body weight in obese mice. Acute treatment with these compounds also led to a drop in elevated blood glucose in a murine model of type II diabetes.

View Article and Find Full Text PDF

A series of 3-acylindole-1-benzylcarboxylic acids were designed and synthesized while searching for a PPARgamma modulator with additional moderate intrinsic PPARalpha agonistic activity. 2-[3-[[3-(4-Chlorobenzoyl)-2-methyl-6-(trifluoromethoxy)-1H-indol-1-yl]methyl]phenoxy]-(2R)-butanoic acid (12d) was identified as such an agent which demonstrated potent efficacy in lowering both glucose and lipids in multiple animal models with significantly attenuated side effects such as fluid retention and heart weight gain associated with PPARgamma full agonists. The moderate PPARalpha activity of 12d not only contributed to the agent's ability to manage lipid profiles but also appears to have potentiated its PPARgamma efficacy in lowering glucose levels in preclinical diabetic animal models.

View Article and Find Full Text PDF

Peroxisome proliferator-activated receptor gamma (PPARgamma) agonists are used to treat type 2 diabetes mellitus (T2DM). Widespread use of PPARgamma agonists has been prevented due to adverse effects including weight gain, edema, and increased risk of congestive heart failure. Selective PPARgamma modulators (SPPARgammaMs) have been identified that have antidiabetic efficacy and reduced toxicity in preclinical species.

View Article and Find Full Text PDF

A series of highly functionalized 3-aroyl and 3-phenoxy-2-methyl-7-azaindoles have been identified, which are potent selective PPARgamma modulators (SPPARgammaMs). Addition of substituents at the 6-position of the 7-azaindoles improves in vitro potency and pharmacokinetics. 7-Azaindoles have significantly improved off-target profiles compared to the parent indole series.

View Article and Find Full Text PDF

The use of the thiazolidinedione insulin sensitizers rosiglitazone and pioglitazone for the treatment of type 2 diabetes mellitus in recent years has proven to be effective in helping patients resume normal glycemic control. However, their use is often associated with undesirable side effects including peripheral edema, congestive heart failure and weight gain. Here, we report the identification and characterization of a novel selective PPARgamma modulator, SPPARgammaM5 ((2S)-2-(2-chloro-5-{[3-(4-chlorophenoxy)-2-methyl-6-(trifluoromethoxy)-1H-indol-1-yl]methyl} phenoxy)propionic acid), which has notable insulin sensitizing properties and a superior tolerability profile to that of rosiglitazone.

View Article and Find Full Text PDF

Peroxisome proliferator-activated receptor (PPAR)-gamma agonists are insulin sensitizers, whereas PPAR alpha agonists are lipid-lowering agents in humans. Chronic treatment with PPAR gamma agonists has been shown to prevent the onset of diabetes in young Zucker diabetic fatty (ZDF) rats; however, the effects of PPAR alpha agonists have not been well characterized in this model. Here we investigated chronic efficacy of PPAR alpha and nonthiazolidinedione (nTZD) PPAR gamma agonists on the onset of diabetes in 6-wk-old male ZDF rats.

View Article and Find Full Text PDF

A series of novel aryl indole-2-carboxylic acids has been identified as potent selective PPARgamma modulators. Their chemical synthesis and in vitro activities are discussed. Compound 5 was selected for in vivo testing in the db/db mouse model of type 2 diabetes and resulted in reduction of hyperglycemia at comparable plasma exposure when compared to rosiglitazone.

View Article and Find Full Text PDF

The synthesis and structure-activity relationships of novel series of alpha-aryloxyphenylacetic acids as PPARalpha/gamma dual agonists are reported. The initial search for surrogates of the ester group in the screen lead led first to the optimization of a subseries with a ketone moiety. Further efforts to modify the ketone subseries led to the design and synthesis of two new subseries containing fused heterocyclic ring systems.

View Article and Find Full Text PDF

This open-label, randomized, placebo-controlled, incomplete-block, 3-period crossover pilot study investigated the effects of peroxisome proliferator-activated receptor alpha- and gamma-agonists on biomarkers of lipid and glucose metabolism in 12 nondiabetic subjects. Plasma samples were collected before and after each 14-day treatment with placebo, fenofibrate (201 mg/d), rosiglitazone (4 mg twice daily), and combined fenofibrate (201 mg/d) plus rosiglitazone (4 mg twice daily). Except for triglycerides (P < .

View Article and Find Full Text PDF

A series of 2-aryloxy-2-methyl-propionic acid compounds and related analogues were designed, synthesized, and evaluated for their PPAR agonist activities. 2-[(5,7-Dipropyl-3-trifluoromethyl)-benzisoxazol-6-yloxy]-2-methylpropionic acid (4) was identified as a PPARalpha/gamma dual agonist with relative PPARalpha selectivity and demonstrated potent efficacy in lowering both glucose and lipids in animal models without causing body weight gain. The PPARalpha activity of 4 appeared to have played a significant role in lowering glucose levels in db/db mice.

View Article and Find Full Text PDF

Effective therapies for the treatment of obesity, a key element of metabolic syndrome, are urgently needed but currently lacking. Stearoyl-CoA desaturase-1 (SCD1) is the rate-limiting enzyme catalyzing the conversion of saturated long-chain fatty acids into monounsaturated fatty acids, which are major components of triglycerides. In the current study, we tested the efficacy of pharmacological inhibition of SCD1 in controlling lipogenesis and body weight in mice.

View Article and Find Full Text PDF

Routine screening for human PPAR ligands yielded compounds 1 and 2, both of which were sub-micromolar hPPARgamma agonists. Synthetic modifications of these leads led to a series of potent substituted 3-benzyl-2-methyl indoles, a subset of which were noted to be selective PPARgamma modulators (SPPARgammaMs). SPPARgammaM 24 displayed robust anti-diabetic activity with an improved therapeutic window in comparison to a PPARgamma full agonist in a rodent efficacy model.

View Article and Find Full Text PDF

A series of chromane-2-carboxylic acid derivatives was synthesized and evaluated for PPAR agonist activities. A structure-activity relationship was developed toward PPARalpha/gamma dual agonism. As a result, (2R)-7-(3-[2-chloro-4-(4-fluorophenoxy)phenoxy]propoxy)-2-ethylchromane-2-carboxylic acid (48) was identified as a potent, structurally novel, selective PPARalpha/gamma dual agonist.

View Article and Find Full Text PDF

Here, we characterize the actions of MK-0767, a dual ligand of the nuclear receptors peroxisome proliferator-activated receptor (PPAR)alpha and PPARgamma. In cell-based assays, MK-0767 produced potent activation of human PPARgamma and PPARalpha with a gamma:alpha potency ratio of approximately 2. The dual agonist induced high affinity interactions of PPARalpha and PPARgamma with the transcriptional coactivator CBP in vitro.

View Article and Find Full Text PDF

Patients with type 2 diabetes mellitus exhibit hyperglycemia and dyslipidemia as well as a markedly increased incidence of atherosclerotic cardiovascular disease. Here we report the characterization of a novel arylthiazolidinedione capable of lowering both glucose and lipid levels in animal models. This compound, designated TZD18, is a potent agonist with dual human peroxisome proliferator-activated receptor (PPAR)-alpha/gamma activities.

View Article and Find Full Text PDF

Adiponectin is an adipocyte-specific secretory protein that circulates in serum as a hexamer of relatively low molecular weight (LMW) and a larger multimeric structure of high molecular weight (HMW). Serum levels of the protein correlate with systemic insulin sensitivity. The full-length protein affects hepatic gluconeogenesis through improved insulin sensitivity, and a proteolytic fragment of adiponectin stimulates beta oxidation in muscle.

View Article and Find Full Text PDF

A series of novel aryloxazolidine-2,4-diones was synthesized. A structure-activity relationship study of these compounds led to the identification of potent, orally active PPAR dual alpha/gamma agonists. Based on the results of efficacy studies in the db/db mice model of type 2 diabetes and the desired pharmacokinetic parameters, compound 12 was selected for further profiling.

View Article and Find Full Text PDF

A new class of O-arylmandelic acid PPAR agonists show excellent anti-hyperglycemic efficacy in a db/db mouse model of DM2. These PPARalpha-weighted agonists do not show the typical PPARgamma associated side effects of BAT proliferation and cardiac hypertrophy in a rat tolerability assay.

View Article and Find Full Text PDF

A novel series of 5-aryl thiazolidine-2,4-diones based dual PPARalpha/gamma agonists was identified. A number of highly potent and orally bioavailable analogues were synthesized. Efficacy study results of some of these analogues in the db/db mice model of type 2 diabetes showed them superior to rosiglitazone in correcting hyperglycemia and hypertriglyceridemia.

View Article and Find Full Text PDF

A series of 5-aryl thiazolidine-2,4-diones containing 4-phenoxyphenyl side chains was designed, synthesized, and evaluated for PPAR agonist activities. One such compound 28 exhibited comparable levels of glucose correction to rosiglitazone in the db/db mouse type 2 diabetes animal model.

View Article and Find Full Text PDF

Beginning with the weakly active lead structure 1, a new series of hPPAR agonists was developed. In vivo glucose and triglyceride lowering activity was obtained by homologation and oxamination to 3, then conversion to substituted benzisoxazoles 4 and 5. Further manipulation afforded benzofurans 6 and 7.

View Article and Find Full Text PDF

A series of amphipathic 3-phenylbenzisoxazoles were found to be potent agonists of human PPARalpha, gamma and delta. The optimization of acid proximal structure for in vitro and in vivo potency is described. Results of po dosed efficacy studies in the db/db mouse model of type 2 diabetes showed efficacy equal or superior to Rosiglitazone in correcting hyperglycemia and hypertriglyceridemia.

View Article and Find Full Text PDF

Antidiabetic thiazolidinediones (TZDs) and non-TZD compounds have been shown to serve as agonists of the peroxisome proliferator-activated receptor gamma (PPARgamma). Here, we report the identification and characterization of a novel non-TZD selective PPARgamma modulator (nTZDpa). nTZDpa bound potently to PPARgamma with high selectivity vs.

View Article and Find Full Text PDF

Thiazolidinediones (TZDs), agonists of peroxisome proliferator-activated receptor-gamma (PPARgamma), improve insulin sensitivity in vivo, and the mechanism remains largely unknown. In this study, we showed that, in Zucker obese (fa/fa) rats, acute (1-day) treatment with both rosiglitazone (a TZD) and a non-TZD PPARgamma agonist (nTZD) reduced plasma free fatty acid and insulin levels and, concomitantly, potentiated insulin-stimulated Akt phosphorylation at threonine 308 (Akt-pT308) in adipose and muscle tissues. A similar effect on Akt was observed in liver after a 7-day treatment.

View Article and Find Full Text PDF