Multiple isoforms of aggregation-prone proteins are present under physiological conditions and have the propensity to assemble into co-oligomers with different properties from self-oligomers, but this process has not been quantitatively studied to date. We have investigated the amyloid-β (Aβ) peptide, associated with Alzheimer's disease, and the aggregation of its two major isoforms, Aβ40 and Aβ42, using a statistical mechanical modelling approach in combination with in vitro single-molecule fluorescence measurements. We find that at low concentrations of Aβ, corresponding to its physiological abundance, there is little free energy penalty in forming co-oligomers, suggesting that the formation of both self-oligomers and co-oligomers is possible under these conditions.
View Article and Find Full Text PDFIntracellular α-synuclein deposits, known as Lewy bodies, have been linked to a range of neurodegenerative disorders, including Parkinson's disease. α-Synuclein binds to synthetic and biological lipids, and this interaction has been shown to play a crucial role for both α-synuclein's native function, including synaptic plasticity, and the initiation of its aggregation. Here, we describe the interplay between the lipid properties and the lipid binding and aggregation propensity of α-synuclein.
View Article and Find Full Text PDFA detailed characterisation of the molecular determinants of membrane binding by α-synuclein (αS), a 140-residue protein whose aggregation is associated with Parkinson's disease, is of fundamental significance to clarify the manner in which the balance between functional and dysfunctional processes are regulated for this protein. Despite its biological relevance, the structural nature of the membrane-bound state αS remains elusive, in part because of the intrinsically dynamic nature of the protein and also because of the difficulties in studying this state in a physiologically relevant environment. In the present study we have used solid-state NMR and restrained MD simulations to refine structure and topology of the N-terminal region of αS bound to the surface of synaptic-like membranes.
View Article and Find Full Text PDFExpanded CAG repeats lead to debilitating neurodegenerative disorders characterized by aggregation of proteins with expanded polyglutamine (polyQ) tracts. The mechanism of aggregation involves primary and secondary nucleation steps. We show how a noncanonical member of the DNAJ-chaperone family, DNAJB6, inhibits the conversion of soluble polyQ peptides into amyloid fibrils, in particular by suppressing primary nucleation.
View Article and Find Full Text PDFα-Synuclein is an intrinsically disordered protein whose aggregation is associated with Parkinson's disease and other related neurodegenerative disorders. Recently, two single-domain camelid antibodies (nanobodies) were shown to bind α-synuclein with high affinity. Herein, we investigated how these two nanobodies (NbSyn2 and NbSyn87), which are directed to two distinct epitopes within the C-terminal domain of α-synuclein, affect the conformational properties of this protein.
View Article and Find Full Text PDFThe ribosome is increasingly becoming recognized as a key hub for integrating quality control processes associated with protein biosynthesis and cotranslational folding (CTF). The molecular mechanisms by which these processes take place, however, remain largely unknown, in particular in the case of intrinsically disordered proteins (IDPs). To address this question, we studied at a residue-specific level the structure and dynamics of ribosome-nascent chain complexes (RNCs) of α-synuclein (αSyn), an IDP associated with Parkinson's disease (PD).
View Article and Find Full Text PDFIt is well-established that widespread transcriptional changes accompany the onset and progression of Alzheimer's disease. Because of the multifactorial nature of this neurodegenerative disorder and its complex relationship with aging, however, it remains unclear whether such changes are the result of nonspecific dysregulation and multisystem failure or instead are part of a coordinated response to cellular dysfunction. To address this problem in a systematic manner, we performed a meta-analysis of about 1,600 microarrays from human central nervous system tissues to identify transcriptional changes upon aging and as a result of Alzheimer's disease.
View Article and Find Full Text PDFIt is increasingly recognized that molecular chaperones play a key role in modulating the formation of amyloid fibrils, a process associated with a wide range of human disorders. Understanding the detailed mechanisms by which they perform this function, however, has been challenging because of the great complexity of the protein aggregation process itself. In this work, we build on a previous kinetic approach and develop a model that considers pairwise interactions between molecular chaperones and different protein species to identify the protein components targeted by the chaperones and the corresponding microscopic reaction steps that are inhibited.
View Article and Find Full Text PDFNew strategies for visualizing self-assembly processes at the nanoscale give deep insights into the molecular origins of disease. An example is the self-assembly of misfolded proteins into amyloid fibrils, which is related to a range of neurodegenerative disorders, such as Parkinson's and Alzheimer's diseases. Here, we probe the links between the mechanism of α-synuclein (AS) aggregation and its associated toxicity by using optical nanoscopy directly in a neuronal cell culture model of Parkinson's disease.
View Article and Find Full Text PDFAggregation of α-synuclein leads to the formation of oligomeric intermediates that can interact with membranes to form pores. However, it is unknown how this leads to cell toxicity in Parkinson's disease. We investigated the species-specific effects of α-synuclein on Ca(2+) signalling in primary neurons and astrocytes using live neuronal imaging and electrophysiology on artificial membranes.
View Article and Find Full Text PDFAmyloid fibrils are a hallmark of a range of neurodegenerative disorders, including Alzheimer's and Parkinson's diseases. A detailed understanding of the physico-chemical properties of the different aggregated forms of proteins, and of their interactions with other compounds of diagnostic or therapeutic interest, is crucial for devising effective strategies against such diseases. Protein aggregates are situated at the boundary between soluble and insoluble structures, and are challenging to study because classical biophysical techniques, such as scattering, spectroscopic and calorimetric methods, are not well adapted for their study.
View Article and Find Full Text PDFThe formation of reactive oxygen species (ROS) is linked to the pathogenesis of neurodegenerative diseases. Here we have investigated the effect of soluble and aggregated amyloid-β (Aβ) and α-synuclein (αS), associated with Alzheimer's and Parkinson's diseases, respectively, on the Cu(2+)-catalyzed formation of ROS in vitro in the presence of a biological reductant. We find that the levels of ROS, and the rate by which ROS is generated, are significantly reduced when Cu(2+) is bound to Aβ or αS, particularly when they are in their oligomeric or fibrillar forms.
View Article and Find Full Text PDFThe conversion of the β-amyloid (Aβ) peptide into pathogenic aggregates is linked to the onset and progression of Alzheimer's disease. Although this observation has prompted an extensive search for therapeutic agents to modulate the concentration of Aβ or inhibit its aggregation, all clinical trials with these objectives have so far failed, at least in part because of a lack of understanding of the molecular mechanisms underlying the process of aggregation and its inhibition. To address this problem, we describe a chemical kinetics approach for rational drug discovery, in which the effects of small molecules on the rates of specific microscopic steps in the self-assembly of Aβ42, the most aggregation-prone variant of Aβ, are analyzed quantitatively.
View Article and Find Full Text PDFAlthough detailed pictures of ribosome structures are emerging, little is known about the structural and cotranslational folding properties of nascent polypeptide chains at the atomic level. Here we used solution-state NMR spectroscopy to define a structural ensemble of a ribosome-nascent chain complex (RNC) formed during protein biosynthesis in Escherichia coli, in which a pair of immunoglobulin-like domains adopts a folded N-terminal domain (FLN5) and a disordered but compact C-terminal domain (FLN6). To study how FLN5 acquires its native structure cotranslationally, we progressively shortened the RNC constructs.
View Article and Find Full Text PDFThe aggregation process of intrinsically disordered proteins (IDPs) has been associated with a wide range of neurodegenerative disorders, including Alzheimer's and Parkinson's diseases. Currently, however, no drug in clinical use targets IDP aggregation. To facilitate drug discovery programs in this important and challenging area, we describe a fragment-based approach of generating small-molecule libraries that target specific IDPs.
View Article and Find Full Text PDFThe protein alpha-synuclein (αS) self-assembles into small oligomeric species and subsequently into amyloid fibrils that accumulate and proliferate during the development of Parkinson's disease. However, the quantitative characterization of the aggregation and spreading of αS remains challenging to achieve. Previously, we identified a conformational conversion step leading from the initially formed oligomers to more compact oligomers preceding fibril formation.
View Article and Find Full Text PDFWe have explored amyloid formation using poly(amino acid) model systems in which differences in peptide secondary structure and hydrophobicity can be introduced in a controlled manner. We show that an environmentally sensitive fluorescent dye, dapoxyl, is able to identify β-sheet structure and hydrophobic surfaces, structural features likely to be related to toxicity, as a result of changes in its excitation and emission profiles and its relative quantum yield. These results show that dapoxyl is a multidimensional probe of the time dependence of amyloid aggregation, which provides information about the presence and nature of metastable aggregation intermediates that is inaccessible to the conventional probes that rely on changes in quantum yield alone.
View Article and Find Full Text PDFWe establish the Hamiltonian structure of the rate equations describing the formation of protein filaments. We then show that this formalism provides a unified view of the behavior of a range of biological self-assembling systems as diverse as actin, prions, and amyloidogenic polypeptides. We further demonstrate that the time-translation symmetry of the resulting Hamiltonian leads to previously unsuggested conservation laws that connect the number and mass concentrations of fibrils and allow linear growth phenomena to be equated with autocatalytic growth processes.
View Article and Find Full Text PDFIncreasingly prevalent neurodegenerative diseases are associated with the formation of nanoscale amyloid aggregates from normally soluble peptides and proteins. A widely used strategy for following the aggregation process and defining its kinetics involves the use of extrinsic dyes that undergo a spectral shift when bound to β-sheet-rich aggregates. An attractive route to carry out such studies is to perform ex situ assays, where the dye molecules are not present in the reaction mixture, but instead are only introduced into aliquots taken from the reaction at regular time intervals to avoid the possibility that the dye molecules interfere with the aggregation process.
View Article and Find Full Text PDFLiving systems protect themselves from aberrant proteins by a network of chaperones. We have tested in vitro the effects of different concentrations, ranging from 0 to 16 μm, of two molecular chaperones, namely αB-crystallin and clusterin, and an engineered monomeric variant of transthyretin (M-TTR), on the morphology and cytotoxicity of preformed toxic oligomers of HypF-N, which represent a useful model of misfolded protein aggregates. Using atomic force microscopy imaging and static light scattering analysis, all were found to bind HypF-N oligomers and increase the size of the aggregates, to an extent that correlates with chaperone concentration.
View Article and Find Full Text PDFThe misfolding and aggregation of proteins into amyloid fibrils characterizes many neurodegenerative disorders such as Parkinson's and Alzheimer's diseases. We report here a method, termed SAVE (single aggregate visualization by enhancement) imaging, for the ultrasensitive detection of individual amyloid fibrils and oligomers using single-molecule fluorescence microscopy. We demonstrate that this method is able to detect the presence of amyloid aggregates of α-synuclein, tau, and amyloid-β.
View Article and Find Full Text PDFLegg-Calvé-Perthes' (Perthes') disease is a developmental disease of the hip joint that may result in numerous short and long term problems. The etiology of the disease remains largely unknown, but the mechanism is believed to be vascular and/or biomechanical in nature. There are several anatomical characteristics that tend to be prevalent in children with Perthes' disease, namely: skeletal immaturity, reduced height, and rostral sparing.
View Article and Find Full Text PDFThe elucidation of the molecular mechanisms by which soluble proteins convert into their amyloid forms is a fundamental prerequisite for understanding and controlling disorders that are linked to protein aggregation, such as Alzheimer's and Parkinson's diseases. However, because of the complexity associated with aggregation reaction networks, the analysis of kinetic data of protein aggregation to obtain the underlying mechanisms represents a complex task. Here we describe a framework, using quantitative kinetic assays and global fitting, to determine and to verify a molecular mechanism for aggregation reactions that is compatible with experimental kinetic data.
View Article and Find Full Text PDFCharacterizing the sizes and interactions of macromolecules under native conditions is a challenging problem in many areas of molecular sciences, which fundamentally arises from the polydisperse nature of biomolecular mixtures. Here, we describe a microfluidic platform for diffusional sizing based on monitoring micron-scale mass transport simultaneously in space and time. We show that the global analysis of such combined space-time data enables the hydrodynamic radii of individual species within mixtures to be determined directly by deconvoluting average signals into the contributions from the individual species.
View Article and Find Full Text PDF