Publications by authors named "Dobrucki L"

Nuclear medicine is an important tool for use in molecular imaging of important biological processes. Methods for intravenous delivery of radiotracers remains a challenge, with tail vein injections demonstrated to be technically difficult and lacking in reproducibility. Other intravenous methods include jugular vein (JV) injection, which requires a more invasive and precise microsurgical technique.

View Article and Find Full Text PDF

Small extracellular vesicles (sEVs) are emerging as critical mediators of intercellular communication in the tumor microenvironment (TME). Here, we investigate the mechanisms by which sEVs derived from neutrophils treated with the cholesterol metabolite, 27-hydroxycholesterol (27HC), influence breast cancer progression. sEVs released from 27HC treated neutrophils enhance epithelial-mesenchymal transition (EMT) and stem-like properties in breast cancer cells, resulting in loss of adherence, increased migratory capacity and resistance to cytotoxic chemotherapy.

View Article and Find Full Text PDF

Objective: We explored the capabilities of power-Doppler ultrasonic (PD-US) imaging without contrast enhancement for monitoring changes in muscle perfusion over time.

Methods: Ischemic recovery was observed in healthy and type II diabetic male and female mice with and without exercise. In separate studies, perfusion was measured during and after 5-min ischemic periods and during four-week recovery periods following irreversible femoral ligation.

View Article and Find Full Text PDF

The role of endothelial nitric oxide synthase (eNOS) in the regulation of a variety of biological processes is well established, and its dysfunction contributes to brain pathologies, including schizophrenia or Alzheimer's disease (AD). Positive allosteric modulators (PAMs) of metabotropic glutamate (mGlu) receptors were shown to be effective procognitive compounds, but little is known about their impact on eNOS expression and stability. Here, we investigated the influence of the acute and chronic administration of LY487379 or CDPPB (mGlu2 and mGlu5 PAMs), on eNOS expression in the mouse brain and the effect of the joint administration of the ligands with nitric oxide (NO) releasers, spermineNONOate or DETANONOate, in different combinations of doses, on MK-801- or scopolamine-induced amnesia in the novel object recognition (NOR) test.

View Article and Find Full Text PDF

As a substitution for hormone replacement therapy, many breast cancer patients use black cohosh (BC) extracts in combination with doxorubicin (DOX)-based chemotherapy. In this study, we evaluated the viability and survival of BC- and DOX-treated MCF-7 cells. A preclinical model of MCF-7 xenografts was used to determine the influence of BC and DOX administration on tumor growth and metabolism.

View Article and Find Full Text PDF

The broader utilization of Cu positron emission tomography (PET) imaging agents has been hindered by the unproductive demetalation induced by bioreductants. To advance the development of Cu-based PET imaging tracers for Alzheimer's Disease (AD), there is a need for novel ligand design strategies. In this study, we developed sulfur-containing dithiapyridinophane (N2S2) bifunctional chelators (BFCs) as well as all nitrogen-based diazapyridinophane (N4) BFCs to compare their abilities to chelate Cu and target Aβ aggregates.

View Article and Find Full Text PDF

The receptor for advanced glycation end-products (RAGE or AGER) is a transmembrane, immunoglobulin-like receptor that, due to its multiple isoform structures, binds to a diverse range of endo- and exogenous ligands. RAGE activation caused by the ligand binding initiates a cascade of complex pathways associated with producing free radicals, such as reactive nitric oxide and oxygen species, cell proliferation, and immunoinflammatory processes. The involvement of RAGE in the pathogenesis of disorders such as diabetes, inflammation, tumor progression, and endothelial dysfunction is dictated by the accumulation of advanced glycation end-products (AGEs) at pathologic states leading to sustained RAGE upregulation.

View Article and Find Full Text PDF

The receptor for advanced glycation end-products (RAGE) has been implicated in driving prostate cancer (PCa) growth, aggression, and metastasis through the fueling of chronic inflammation in the tumor microenvironment. This systematic review and meta-analysis summarizes and analyzes the current clinical and preclinical data to provide insight into the relationships among RAGE levels and PCa, cancer grade, and molecular effects. A multi-database search was used to identify original clinical and preclinical research articles examining RAGE expression in PCa.

View Article and Find Full Text PDF

Chromophores with zwitterionic excited-state intramolecular proton transfer (ESIPT) have been shown to have larger Stock shifts and red-shifted emission wavelengths compared to the conventional π-delocalized ESIPT molecules. However, there is still a dearth of design strategies to expand the current library of zwitterionic ESIPT compounds. Herein, a novel zwitterionic excited-state intramolecular proton transfer system is reported, enabled by addition of 1,4,7-triazacyclononane (TACN) fragments on a dicyanomethylene-4H-pyran (DCM) scaffold.

View Article and Find Full Text PDF

Nitric oxide (NO) is one of the most important molecules released by endothelial cells, and its antiatherogenic properties support cardiovascular homeostasis. Diminished NO bioavailability is a common hallmark of endothelial dysfunction underlying the pathogenesis of the cardiovascular disease. Vascular NO is synthesized by endothelial nitric oxide synthase (eNOS) from the substrate L-arginine (L-Arg), with tetrahydrobiopterin (BH) as an essential cofactor.

View Article and Find Full Text PDF

Personalized medicine is emerging as a new goal in the diagnosis and treatment of diseases. This approach aims to establish differences between patients suffering from the same disease, which allows to choose the most effective treatment. Molecular imaging (MI) enables advanced insight into molecule interactions and disease pathology, improving the process of diagnosis and therapy and, for that reason, plays a crucial role in personalized medicine.

View Article and Find Full Text PDF

Macrophages are white blood cells with diverse functions contributing to a healthy immune response as well as the pathogenesis of cancer, osteoarthritis, atherosclerosis, and obesity. Due to their pleiotropic and dynamic nature, tools for imaging and tracking these cells at scales spanning the whole body down to microns could help to understand their role in disease states. Here we report fluorescent and radioisotopic quantum dots (QDs) for multimodal imaging of macrophage cells , , and .

View Article and Find Full Text PDF

The incidence of inflammatory bowel disease (IBD) is increasing worldwide. Although current diagnostic and disease monitoring tests for IBD sensitively detect gut inflammation, they lack the molecular and cellular specificity of positron emission tomography (PET). In this proof-of-concept study, we use a radiolabeled macrophage-targeted nanocarrier probe (Cu-NOTA-D500) administered by oral, enema, and intraperitoneal routes to evaluate the delivery route dependence of biodistribution across healthy and diseased tissues in a murine model of dextran sodium sulfate (DSS)-induced colitis.

View Article and Find Full Text PDF

Background: Molecular imaging with molecularly targeted probes is a powerful tool for studying the spatio-temporal interactions between complex biological processes. The pivotal role of the receptor for advanced glycation end products (RAGE), and its involvement in numerous pathological processes, aroused the demand for RAGE-targeted imaging in various diseases. In the present study, we evaluated the use of a diagnostic imaging agent for RAGE quantification in an animal model of peripheral artery disease, a multimodal dual-labeled probe targeted at RAGE (MMIA-CML).

View Article and Find Full Text PDF

Psoriatic arthritis (PsA) is a chronic, progressive, inflammatory arthropathy associated with psoriasis as well as a complex pathogenesis. Genetic and environmental factors trigger the development of the immune-mediated auto-inflammatory response in different sites: skin, bone marrow, entheses and synovial tissues. Studies of the last two decades have changed the view of PsA from a mild, non-progressive arthritis to an inflammatory systemic disease with serious health consequences, not only associated with joint dysfunction, but also with an increased risk of cardiovascular disease and socioeconomic consequences with significantly reduced quality of life.

View Article and Find Full Text PDF

Obesity is associated with systemic inflammation due to macrophage accumulation in adipose tissue (AT). AT macrophages are, therefore, a target for therapeutics to modulate inflammation and prevent comorbidities. Because inflammatory processes have pleiotropic effects throughout the body and are intertwined with metabolic axes, systemic anti-inflammatory therapies are often harmful.

View Article and Find Full Text PDF

Psoriasis is a systemic disease that is strictly connected with metabolic disorders (insulin resistance, atherogenic dyslipidemia, arterial hypertension, and cardiovascular diseases). It occurs more often in patients with a more severe course of the disease. Obesity is specially an independent risk factor and it is associated with a worse treatment outcome because of the high inflammatory activity of visceral fatty tissue and the production of inflammatory mediators involved in the development of both psoriasis and metabolic disorders.

View Article and Find Full Text PDF

Various cancer cells have been demonstrated to have the capacity to form plasmonic gold nanoparticles when chloroauric acid is introduced to their cellular microenvironment. But their biomedical applications are limited, particularly considering the millimolar concentrations and longer incubation period of ionic gold. Here, we describe a simplistic method of intracellular biomineralization to produce plasmonic gold nanoparticles at micromolar concentrations within 30 min of application utilizing polyethylene glycol as delivery vector for ionic gold.

View Article and Find Full Text PDF

Psoriasis is a multifactorial disease in which genetic, environmental and epigenetic factors regulating gene expression play a key role. In the "genomic era", genome-wide association studies together with target genotyping platforms performed in different ethnic populations have found more than 50 genetic susceptible markers associated with the risk of psoriasis which have been identified so far. Up till now, the strongest association with the risk of the disease has been proved for HLA-C*06 gene.

View Article and Find Full Text PDF

Psoriasis is a common, chronic, inflammatory, immune-mediated skin disease affecting about 2% of the world's population. According to current knowledge, psoriasis is a complex disease that involves various genes and environmental factors, such as stress, injuries, infections and certain medications. The chronic inflammation of psoriasis lesions develops upon epidermal infiltration, activation, and expansion of type 1 and type 17 Th cells.

View Article and Find Full Text PDF

2-methoxyestradiol (2-ME) is a physiological anticancer compound, metabolite of 17β-estradiol. Previously, our group evidenced that from mechanistic point of view one of anticancer mechanisms of action of 2-ME is specific induction and nuclear hijacking of neuronal nitric oxide synthase (nNOS), resulting in local generation of nitro-oxidative stress and finally, cancer cell death. The current study aims to establish the substantial mechanism of generation of reactive nitrogen species by 2-ME.

View Article and Find Full Text PDF

Purpose: Current screening and monitoring of prostate cancer (PCa) is insufficient, producing inaccurate diagnoses. Presence of the receptor for advanced glycation end-products (RAGE) is associated with signature characteristics of PCa development such as cell proliferation, anchorage-independent growth, angiogenesis, migration, invasion, and poor patient survival. Therefore, we developed a preclinical multimodal imaging strategy targeted at RAGE to diagnose and monitor PCa.

View Article and Find Full Text PDF

Myotonic dystrophy type 1 (DM1) is a multisystemic genetic disorder caused by the CTG repeat expansion in the 3'-untranslated region of DMPK gene. Heart dysfunctions occur in ∼80% of DM1 patients and are the second leading cause of DM1-related deaths. Herein, we report that upregulation of a non-muscle splice isoform of RNA-binding protein RBFOX2 in DM1 heart tissue-due to altered splicing factor and microRNA activities-induces cardiac conduction defects in DM1 individuals.

View Article and Find Full Text PDF

: Peripheral arterial disease (PAD) is a major worldwide health concern. Since the late 1990s therapeutic angiogenesis has been investigated as an alternative to traditional PAD treatments. Although positive preclinical results abound in the literature, the outcomes of human clinical trials have been discouraging.

View Article and Find Full Text PDF