Paired associative stimulation (PAS) is a widely used noninvasive brain stimulation protocol to assess neural plasticity. Its reproducibility, however, has been rarely tested and with mixed results. With two consecutive studies, we aimed to provide further tests and a more systematic assessment of PAS reproducibility.
View Article and Find Full Text PDFExpert Rev Neurother
March 2021
: This Perspective reassesses the consensus opinion that statin-associated muscle symptoms (SAMS) occur in <1% of users and associated myopathic proximal muscle weakness is even more rare.: Of the over 180,000 participants in clinical trials and large registries of statin users, only a few studies have included a standard manual muscle test (MMT), dynamometry or a focused questionnaire to assess for proximal weakness and related disability in daily and recreational activities. Formal strength testing suggests, however, that weakness can be demonstrated in at least 10% of users.
View Article and Find Full Text PDFImportance: One major advantage of developing large, federally funded networks for clinical research in neurology is the ability to have a trial-ready network that can efficiently conduct scientifically rigorous projects to improve the health of people with neurologic disorders.
Observations: National Institute of Neurological Disorders and Stroke Network for Excellence in Neuroscience Clinical Trials (NeuroNEXT) was established in 2011 and renewed in 2018 with the goal of being an efficient network to test between 5 and 7 promising new agents in phase II clinical trials. A clinical coordinating center, data coordinating center, and 25 sites were competitively chosen.
Neurorehabil Neural Repair
December 2019
. Clinical care and randomized trials of rehabilitation or surgery for symptomatic lumbar spinal stenosis with neurogenic claudication (LSS) are complicated by the lack of standard criteria for diagnosis and outcome measurement. .
View Article and Find Full Text PDFBackground And Purpose: The potential for adaptive plasticity in the post-stroke brain is difficult to estimate, as is the demonstration of central nervous system (CNS) target engagement of drugs that show promise in facilitating stroke recovery. We set out to determine if paired associative stimulation (PAS) can be used (a) as an assay of CNS plasticity in patients with chronic stroke, and (b) to demonstrate CNS engagement by memantine, a drug which has potential plasticity-modulating effects for use in motor recovery following stroke.
Methods: We examined the effect of PAS in fourteen participants with chronic hemiparetic stroke at five time-points in a within-subjects repeated measures design study: baseline off-drug, and following a week of orally administered memantine at doses of 5, 10, 15, and 20 mg, comprising a total of seventy sessions.
Detailed behavioral analysis is key to understanding the brain-behavior relationship. Here, we present deep learning-based methods for analysis of behavior imaging data in mice and humans. Specifically, we use three different convolutional neural network architectures and five different behavior tasks in mice and humans and provide detailed instructions for rapid implementation of these methods for the neuroscience community.
View Article and Find Full Text PDFAnnu Int Conf IEEE Eng Med Biol Soc
July 2018
In a dual arm therapeutic regime aiming to rehabilitate motor functions post stroke, both the affected arm (paretic) and the unaffected (non-paretic) arm are involved. In this context, the leading idea is that motor functions of the affected arm during a reaching task may be improved if the unaffected arm has already reached the target. As part of this pilot study, one chronic post-stroke patient with weakness and spasticity on his right arm conducted reaching tasks to virtual targets arranged in a $5\times 3$ matrix located parallel to his frontal plane, in two different configurations: (1) affected arm only (without assistance from the exoskeleton); (2) unaffected arm first followed by the affected arm (2a) without, and (2b) with assistance.
View Article and Find Full Text PDFCurr Neurol Neurosci Rep
October 2018
Purpose Of Review: Measurements obtained during real-world activity by wearable motion sensors may contribute more naturalistic accounts of clinically meaningful changes in impairment, activity, and participation during neurologic rehabilitation, but obstacles persist. Here we review the basics of wearable sensors, the use of existing systems for neurological and rehabilitation applications and their limitations, and strategies for future use.
Recent Findings: Commercial activity-recognition software and wearable motion sensors for community monitoring primarily calculate steps and sedentary time.
Background: Physical activity (PA) plays a major role in maintaining cognition in older adults. PA has been shown to be correlated with total hippocampal volume, a memory-critical region within the medial temporal lobe (MTL). However, research on associations between PA and MTL sub-region integrity is limited.
View Article and Find Full Text PDFBackground: Evidence-based guidelines are needed to inform rehabilitation practice, including the effect of number of exercise training sessions on recovery of walking ability after stroke.
Objective: The objective of this study was to determine the response to increasing number of training sessions of 2 interventions-locomotor training and strength and balance exercises-on poststroke walking recovery.
Design: This is a secondary analysis of the Locomotor Experience Applied Post-Stroke (LEAPS) randomized controlled trial.
Neurorehabil Neural Repair
March 2017
Although motor learning theory has led to evidence-based practices, few trials have revealed the superiority of one theory-based therapy over another after stroke. Nor have improvements in skills been as clinically robust as one might hope. We review some possible explanations, then potential technology-enabled solutions.
View Article and Find Full Text PDFCurr Opin Neurol
December 2016
Purpose Of Review: Rehabilitation trials and postacute care to lessen impairments and disability after stroke, spinal cord injury, and traumatic brain injury almost never include training to promote long-term self-management of skills practice, strengthening and fitness. Without behavioral training to develop self-efficacy, clinical trials, and home-based therapy may fail to show robust results.
Recent Findings: Behavioral theories about self-management and self-efficacy for physical activity have been successfully incorporated into interventions for chronic diseases, but rarely for neurologic rehabilitation.
Background Paresis in stroke is largely a result of damage to descending corticospinal and corticobulbar pathways. Recovery of paresis predominantly reflects the impact on the neural consequences of this white matter lesion by reactive neuroplasticity (mechanisms involved in spontaneous recovery) and experience-dependent neuroplasticity, driven by therapy and daily experience. However, both theoretical considerations and empirical data suggest that type of stroke (large vessel distribution/lacunar infarction, hemorrhage), locus and extent of infarction (basal ganglia, right-hemisphere cerebral cortex), and the presence of leukoaraiosis or prior stroke might influence long-term recovery of walking ability.
View Article and Find Full Text PDFNovel molecular, cellular, and pharmacological therapies to stimulate repair of sensorimotor circuits after stroke are entering clinical trials. Compared with acute neuroprotection and thrombolysis studies, clinical trials for repair in subacute and chronic hemiplegic participants have a different time course for delivery of an intervention, different mechanisms of action within the milieu of the injury, distinct relationships to the amount of physical activity and skills practice of participants, and need to include more refined outcome measures. This review examines the biological interaction of targeted rehabilitation with neural repair strategies to optimize outcomes.
View Article and Find Full Text PDFProfiling the daily activity of a physically disabled person in the community would enable healthcare professionals to monitor the type, quantity, and quality of their patients' compliance with recommendations for exercise, fitness, and practice of skilled movements, as well as enable feedback about performance in real-world situations. Based on our early research in in-community activity profiling, we present in this paper an end-to-end system capable of reporting a patient's daily activity at multiple levels of granularity: 1) at the highest level, information on the location categories a patient is able to visit; 2) within each location category, information on the activities a patient is able to perform; and 3) at the lowest level, motion trajectory, visualization, and metrics computation of each activity. Our methodology is built upon a physical activity prescription model coupled with MEMS inertial sensors and mobile device kits that can be sent to a patient at home.
View Article and Find Full Text PDFBackground: Walking-related disability is the most frequent reason for inpatient stroke rehabilitation. Task-related practice is a critical component for improving patient outcomes.
Objective: To test the feasibility of providing quantitative feedback about daily walking performance and motivating greater skills practice via remote sensing.
Background: Coronary artery disease is highly prevalent in patients with stroke, but because revascularization does not improve major clinical outcomes in patients with stable coronary artery disease relative to intensive medical therapy, routine evaluation for this disease is not warranted in stroke patients. However, it might be warranted in patients destined to undergo vigorous physical therapy. The Locomotor Experience Applied Post-Stroke study, a randomized controlled trial of 408 participants that tested the relative efficacy of two rehabilitation techniques on functional walking level, provided the opportunity to address this question.
View Article and Find Full Text PDFBackground And Purpose: Behavioral measures are often used to distinguish subgroups of patients with stroke (eg, to predict treatment gains, stratify clinical trial enrollees, or select rehabilitation therapy). In studies of the upper extremity, measures of brain function using functional magnetic resonance imaging (fMRI) have also been found useful, but this approach has not been examined for the lower extremity. The current study hypothesized that an fMRI-based measure of cortical function would significantly improve prediction of treatment-induced lower extremity behavioral gains.
View Article and Find Full Text PDFThe Locomotor Experience Applied Post Stroke rehabilitation trial found equivalent walking outcomes for body weight-supported treadmill plus overground walking practice versus home-based exercise that did not emphasize walking. From this large database, we examined several clinically important questions that provide insights into recovery of walking that may affect future trial designs. Using logistic regression analyses, we examined predictors of response based on a variety of walking speed-related outcomes and measures that captured disability, physical impairment, and quality of life.
View Article and Find Full Text PDF