Publications by authors named "Dobie R"

The liver has a unique ability to regenerate; however, in the setting of acute liver failure (ALF), this regenerative capacity is often overwhelmed, leaving emergency liver transplantation as the only curative option. Here, to advance understanding of human liver regeneration, we use paired single-nucleus RNA sequencing combined with spatial profiling of healthy and ALF explant human livers to generate a single-cell, pan-lineage atlas of human liver regeneration. We uncover a novel ANXA2 migratory hepatocyte subpopulation, which emerges during human liver regeneration, and a corollary subpopulation in a mouse model of acetaminophen (APAP)-induced liver regeneration.

View Article and Find Full Text PDF

Single-cell transcriptomics is the current gold standard for global gene expression profiling, not only in mammals and model species, but also in non-model fish species. This is a rapidly expanding field, creating a deeper understanding of tissue heterogeneity and the distinct functions of individual cells, making it possible to explore the complexities of immunology and gene expression on a highly resolved level. In this study, we compared two single cell transcriptomic approaches to investigate cellular heterogeneity within the head kidney of healthy farmed Atlantic salmon (Salmo salar).

View Article and Find Full Text PDF

The spleen is a conserved secondary lymphoid organ that emerged in parallel to adaptive immunity in early jawed vertebrates. Recent studies have applied single cell transcriptomics to reveal the cellular composition of spleen in several species, cataloguing diverse immune cell types and subpopulations. In this study, 51,119 spleen nuclei transcriptomes were comprehensively investigated in the commercially important teleost Atlantic salmon (Salmo salar L.

View Article and Find Full Text PDF

The use of single cell sequencing technologies has exploded over recent years, and is now commonly used in many non-model species. Sequencing nuclei instead of whole cells has become increasingly popular, as it does not require the processing of samples immediately after collection. Here we present a highly effective nucleus isolation protocol that outperforms previously available method in challenging samples in a non-model specie.

View Article and Find Full Text PDF

Aims: Specific fibroblast markers and in-depth heterogeneity analysis are currently lacking, hindering functional studies in cardiovascular diseases (CVDs). Here, we established cell-type markers and heterogeneity in murine and human arteries and studied the adventitial fibroblast response to CVD and its risk factors hypercholesterolaemia and ageing.

Methods And Results: Murine aorta single-cell RNA-sequencing analysis of adventitial mesenchymal cells identified fibroblast-specific markers.

View Article and Find Full Text PDF

Advanced hepatic fibrosis, driven by the activation of hepatic stellate cells (HSCs), affects millions worldwide and is the strongest predictor of mortality in nonalcoholic steatohepatitis (NASH); however, there are no approved antifibrotic therapies. To identify antifibrotic drug targets, we integrated progressive transcriptomic and morphological responses that accompany HSC activation in advanced disease using single-nucleus RNA sequencing and tissue clearing in a robust murine NASH model. In advanced fibrosis, we found that an autocrine HSC signaling circuit emerged that was composed of 68 receptor-ligand interactions conserved between murine and human NASH.

View Article and Find Full Text PDF

The human endometrium experiences repetitive cycles of tissue wounding characterised by piecemeal shedding of the surface epithelium and rapid restoration of tissue homeostasis. In this study, we used a mouse model of endometrial repair and three transgenic lines of mice to investigate whether epithelial cells that become incorporated into the newly formed luminal epithelium have their origins in one or more of the mesenchymal cell types present in the stromal compartment of the endometrium. Using scRNAseq, we identified a novel population of PDGFRb + mesenchymal stromal cells that developed a unique transcriptomic signature in response to endometrial breakdown/repair.

View Article and Find Full Text PDF
Article Synopsis
  • Hepatocellular carcinoma (HCC) is a major cause of cancer deaths, primarily occurring in patients with chronic liver disease and advanced fibrosis, with hepatic stellate cells (HSCs) playing a significant role.
  • Research on mouse models showed that HSCs have a tumor-promoting function, interacting with liver cells to influence both liver cell (hepatocyte) growth and death during HCC development.
  • A shift in HSC types during liver disease progression leads to increased HCC risk, where protective mediators become less active while tumor-promoting factors gain dominance.
View Article and Find Full Text PDF

The liver is a multitasking organ with essential functions for vertebrate health spanning metabolism and immunity. In contrast to mammals, our understanding of liver cellular heterogeneity and its role in regulating immunological status remains poorly defined in fishes. Addressing this knowledge gap, we generated a transcriptomic atlas of 47,432 nuclei isolated from the liver of Atlantic salmon ( L.

View Article and Find Full Text PDF

The development of stable specialized cell types in multicellular organisms relies on mechanisms controlling inductive intercellular signals and the competence of cells to respond to such signals. In developing cerebral cortex, progenitors generate only glutamatergic excitatory neurons despite being exposed to signals with the potential to initiate the production of other neuronal types, suggesting that their competence is limited. Here, we tested the hypothesis that this limitation is due to their expression of transcription factor Pax6.

View Article and Find Full Text PDF

Aims: Coronary vasculature formation is a critical event during cardiac development, essential for heart function throughout perinatal and adult life. However, current understanding of coronary vascular development has largely been derived from transgenic mouse models. The aim of this study was to characterize the transcriptome of the human foetal cardiac endothelium using single-cell RNA sequencing (scRNA-seq) to provide critical new insights into the cellular heterogeneity and transcriptional dynamics that underpin endothelial specification within the vasculature of the developing heart.

View Article and Find Full Text PDF

Aims: Endothelial cell (EC) dysfunction drives the initiation and pathogenesis of pulmonary arterial hypertension (PAH). We aimed to characterize EC dynamics in PAH at single-cell resolution.

Methods And Results: We carried out single-cell RNA sequencing (scRNA-seq) of lung ECs isolated from an EC lineage-tracing mouse model in Control and SU5416/hypoxia-induced PAH conditions.

View Article and Find Full Text PDF

Galectin-3 (Gal-3) is an immune regulator and an important driver of fibrosis in chronic lung injury, however, its role in acute lung injury (ALI) remains unknown. Previous work has shown that global deletion of galectin-3 reduces collagen deposition in a bleomycin-induced pulmonary fibrosis model (MacKinnon et al., Am.

View Article and Find Full Text PDF
Article Synopsis
  • In healthy liver conditions, ductal cells have low proliferation rates but can rapidly divide after injury; organoids can mimic some regeneration processes but miss key interactions found in the actual tissue.
  • The study utilizes organoid co-cultures to explore how specific mouse periportal mesenchymal cells influence ductal cell growth, either promoting or inhibiting it based on their contact with each other.
  • Results indicate that both direct cell-cell interactions and Notch signaling play crucial roles in regulating cellular behavior, highlighting the importance of these interactions during tissue regeneration.
View Article and Find Full Text PDF

Dupuytren's disease (DD) is a common, progressive fibroproliferative disease affecting the palmar fascia of the hands, causing fingers to irreversibly flex toward the palm with significant loss of function. Surgical treatments are limited; therefore, effective new therapies for DD are urgently required. To identify the key cellular and molecular pathways driving DD, we employed single-cell RNA sequencing, profiling the transcriptomes of 35,250 human single cells from DD, nonpathogenic fascia, and healthy dermis.

View Article and Find Full Text PDF

The kidney cortical collecting duct (CCD) comprises principal cells (PCs), intercalated cells (IC), and the recently discovered intermediate cell type. Kidney pathology in a mouse model of the syndrome of apparent aldosterone excess revealed plasticity of the CCD, with altered PC:intermediate cell:IC ratio. The self-immortalized mouse CCD cell line, mCCD, shows functional characteristics of PCs, but displays a range of cell types, including intermediate cells, making it ideal to study plasticity.

View Article and Find Full Text PDF

Central nervous system injury re-initiates neurogenesis in anamniotes (amphibians and fishes), but not in mammals. Activation of the innate immune system promotes regenerative neurogenesis, but it is fundamentally unknown whether this is indirect through the activation of known developmental signaling pathways or whether immune cells directly signal to progenitor cells using mechanisms that are unique to regeneration. Using single-cell RNA-seq of progenitor cells and macrophages, as well as cell-type-specific manipulations, we provide evidence for a direct signaling axis from specific lesion-activated macrophages to spinal progenitor cells to promote regenerative neurogenesis in zebrafish.

View Article and Find Full Text PDF

The endometrium is a dynamic tissue that exhibits remarkable resilience to repeated episodes of differentiation, breakdown, regeneration, and remodeling. Endometrial physiology relies on a complex interplay between the stromal and epithelial compartments with the former containing a mixture of fibroblasts, vascular, and immune cells. There is evidence for rare populations of putative mesenchymal progenitor cells located in the perivascular niche of human endometrium, but the existence of an equivalent cell population in mouse is unclear.

View Article and Find Full Text PDF
Article Synopsis
  • Kidney fibrosis is a big problem in chronic kidney disease, but there are currently no treatments to stop it.
  • Scientists studied kidney cells from healthy and diseased kidneys to understand what causes fibrosis and which cells are involved.
  • They discovered specific types of cells that help create scar tissue in the kidneys and found a potential new target for treatment called NKD2.
View Article and Find Full Text PDF

Liver disease is a major global health-care problem, affecting an estimated 844 million people worldwide. Despite this substantial burden, therapeutic options for liver disease remain limited, in part owing to a paucity of detailed analyses defining the cellular and molecular mechanisms that drive these conditions in humans. Single-cell transcriptomic technologies are transforming our understanding of cellular diversity and function in health and disease.

View Article and Find Full Text PDF
Article Synopsis
  • The omentum is a fat-rich tissue that plays a crucial role in immune defense by capturing contaminants in the abdominal cavity during conditions like peritonitis.
  • Single-cell RNA sequencing uncovered that the surface of fat-associated lymphoid clusters (FALCs) is lined with specific cells called CXCL1 mesothelial cells, which are vital for recruiting neutrophils.
  • Blocking CXCL1 or inhibiting certain enzymes significantly reduced neutrophil activity and contaminant capture, highlighting the specialized role of these cells in immune responses to infection.
View Article and Find Full Text PDF

Acoustic trauma (AT) is permanent hearing loss after a single noise exposure. A few human cases resulting from continuous, i.e.

View Article and Find Full Text PDF

Iterative liver injury results in progressive fibrosis disrupting hepatic architecture, regeneration potential, and liver function. Hepatic stellate cells (HSCs) are a major source of pathological matrix during fibrosis and are thought to be a functionally homogeneous population. Here, we use single-cell RNA sequencing to deconvolve the hepatic mesenchyme in healthy and fibrotic mouse liver, revealing spatial zonation of HSCs across the hepatic lobule.

View Article and Find Full Text PDF

Fibrosis, the excessive accumulation of extracellular matrix, is a major global healthcare burden. Despite major advances in our understanding of the mechanisms regulating fibrosis, treatment options for patients with fibrosis remain very limited. However, recent developments in the rapidly evolving field of single-cell transcriptomics are enabling the interrogation of individual pathogenic cell populations in the context of fibrosis at unprecedented resolution.

View Article and Find Full Text PDF

Liver cirrhosis is a major cause of death worldwide and is characterized by extensive fibrosis. There are currently no effective antifibrotic therapies available. To obtain a better understanding of the cellular and molecular mechanisms involved in disease pathogenesis and enable the discovery of therapeutic targets, here we profile the transcriptomes of more than 100,000 single human cells, yielding molecular definitions for non-parenchymal cell types that are found in healthy and cirrhotic human liver.

View Article and Find Full Text PDF