Virgibacillus spp. stand out as a potent starter culture for accelerating the fermention of fish sauces and shrimp pastes. However, the underlying molecular mechanisms responsible for their adaptation and biotechnological potential remain elusive.
View Article and Find Full Text PDFAlcaligenes faecalis D334 was determined in this study as a salt-tolerant bacterium isolated from mangrove sediment. In response to 6% (w/v) NaCl, strain D334 produced the highest ectoines of 14.14 wt%.
View Article and Find Full Text PDFThe utilization of waste cooking oil (WCO) or waste fish oil (WFO) as inexpensive carbon substrate for the production of poly(3-hydroxybutyrate) (PHB) by H16 was investigated. Fed-batch cultivation mode in bioreactor was applied in this study. High cell dry weight (CDW) of 135.
View Article and Find Full Text PDFRice straw is an important low-cost feedstock for bio-based economy. This report presents a study in which rice straw was used both as a source for isolation of bacteria producing the biodegradable polyester polyhydroxyalkanoate (PHA), as well as the carbon source for the production of the polymer by the isolated bacteria. Of the 100 bacterial isolates, seven were found to be positive for PHA production by Nile blue staining and were identified as Bacillus species by 16S rRNA gene sequence analysis.
View Article and Find Full Text PDFShrimp paste is a traditional fermented food produced by many Asian countries. Bacteria play important roles in the shrimp paste fermentation process. In order to survive under the low water activity (A) conditions caused by the high salt concentration, the bacteria need to employ a special adaptation strategy.
View Article and Find Full Text PDFYangia sp. ND199 is a moderately halophilic bacterium isolated from mangrove samples in Northern Vietnam, which was earlier reported to grow on several sugars and glycerol to accumulate poly(hydroxyalkanoates) (PHA). In this study, the potential of the bacterium for co-production of exopolysaccharides (EPS) and PHA was investigated.
View Article and Find Full Text PDFPolyhydroxyalkanoates (PHAs) are a potential replacement for some petrochemical-based plastics. PHAs are polyesters synthesized and stored by various bacteria and archaea in their cytoplasm as water-insoluble inclusions. PHAs are usually produced when the microbes are cultured with nutrient-limiting concentrations of nitrogen, phosphorus, sulfur, or oxygen and excess carbon sources.
View Article and Find Full Text PDFA moderately halophilic bacterium isolated from fermenting shrimp paste, Salinivibrio sp. M318 was found capable of using fish sauce and mixtures of waste fish oil and glycerol as nitrogen and carbon sources, respectively, for poly(3-hydroxybutyrate) (PHB) production. A cell dry weight (CDW) of up to 10 g/L and PHB content of 51.
View Article and Find Full Text PDFA halophilic bacterium isolated from mangrove soil sample in Northern Vietnam, Yangia sp. ND199 was found capable of producing homopolymer poly(3-hydroxybutyrate) [P(3HB)], copolymer poly(3-hydroxybutyrate-co-3-hydroxyvalerate) [P(3HB-co-3HV)], and copolymer poly(3-hydroxybutyrate-co-4-hydroxybutyrate) [P(3HB-co-4HB)] from different carbon sources. The presence of 3HB, 3HV, and 4HB monomers were confirmed by gas chromatography and nuclear magnetic resonance analysis.
View Article and Find Full Text PDFBackground: Microbial polyesters, also known as polyhydroxyalkanoates (PHAs), closely resemble physical and mechanical features of petroleum derived plastics. Recombinant Escherichia coli strains are being used in industrial production of PHAs in Stirred Tank Bioreactors (STRs). However, use of Air-Lift Reactors (ALRs) has been known to offer numerous technical operating options over STRs, and as such has been successfully implemented in many bioprocesses.
View Article and Find Full Text PDFYangia sp. ND199, a moderate halophile isolated from mangrove soil sample in Vietnam, was found to accumulate poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) from unrelated carbon sources in a medium with 4.5% (w/v) NaCl.
View Article and Find Full Text PDFThis research article reports halophilic and halotolerant bacteria isolated from mangrove forests located in Northern Vietnam. Several of these bacteria were able to synthesize polyhydroxyalkanoates (PHAs). PHAs are polyesters stored by microorganisms under the presence of considerable amounts of a carbon source and deficiency of other essential nutrient such as nitrogen or phosphorous.
View Article and Find Full Text PDFCompatible solutes are small, soluble organic compounds that have the ability to stabilise proteins against various stress conditions. In this study, the protective effect of ectoines against pH stress is examined using a recombinant xylanase from Bacillus halodurans as a model. Ectoines improved the enzyme stability at low (4.
View Article and Find Full Text PDFA process comprising two-step fed-batch cultivation has been investigated for the production of ectoines using the halophilic bacterium Halomonas boliviensis DSM 15516(T). The first cultivation was performed under optimal conditions for cell growth and resulted in cell mass concentration of about 41 g l(-1) after 24 h of cultivation. During the second cultivation at higher salt concentration, accumulation of ectoines increased while cell mass decreased with increasing salt concentration.
View Article and Find Full Text PDFAppl Microbiol Biotechnol
February 2010
Biodegradable materials with plastic or elastomeric properties are in great demand for a variety of applications. Polyhydroxyalkanoates (PHAs), polyesters synthesized by microorganisms, possess such desired features. Industrial production of PHAs is currently achieved using recombinant Escherichia coli.
View Article and Find Full Text PDFTwo cultivation steps were used for production of biomass and ectoine by Halomonas boliviensis, respectively. The optimization of some nutrient parameters in each step was investigated by using response surface methodology. Twenty and 12 experiments were performed to attain optimal conditions for biomass and ectoine production, respectively.
View Article and Find Full Text PDFAppl Microbiol Biotechnol
October 2009
The paper reports a study involving the use of Halomonas boliviensis, a moderate halophile, for co-production of compatible solute ectoine and biopolyester poly(3-hydroxybutyrate) (PHB) in a process comprising two fed-batch cultures. Initial investigations on the growth of the organism in a medium with varying NaCl concentrations showed the highest level of intracellular accumulation of ectoine (0.74 g L(-1)) at 10-15% (w/v) NaCl, while at 15% (w/v) NaCl, the presence of hydroxyectoine (50 mg L(-1)) was also noted.
View Article and Find Full Text PDFAppl Microbiol Biotechnol
February 2008
High poly(3-hydroxybutyrate) (PHB) content and volumetric productivity were achieved by fed-batch culture of Halomonas boliviensis using a defined medium. Initial shake flask cultivations in a minimal medium revealed that the growth of H. boliviensis was supported only when the medium was supplemented with aspartic acid, glycine, or glutamine.
View Article and Find Full Text PDF