Publications by authors named "Doan Van Binh"

The development of cascading hydropower dams in river basins has significantly altered natural flow regimes in recent decades. This study investigates hydrological alterations caused by cascading hydropower dams in the Lancang-Mekong River Basin (LMRB) by integrating the Indicators of Hydrologic Alteration (IHA) method with non-regulated flow predicted using the Random Forest (RF) machine learning (ML) technique. The analysis focuses on four hydrological stations: Chiang Saen, Mukdahan, Pakse, and Stung Treng across pre-impact (1961-1991), transition (1992-2008), and post-impact (2009-2021) periods.

View Article and Find Full Text PDF

The Mekong River Basin (MRB) is crucial for the livelihoods of over 60 million people across six Southeast Asian countries. Understanding long-term sediment changes is crucial for management and contingency plans, but the sediment concentration data in the MRB are extremely sporadic, making analysis challenging. This study focuses on reconstructing long-term suspended sediment concentration (SSC) data using a novel semi-supervised machine learning (ML) model.

View Article and Find Full Text PDF

Rampant and illegal river sand mining in the Vietnamese Mekong Delta (VMD) has led to substantial sediment losses and bank erosion. However, regulation of this issue remains a significant challenge due to insufficient monitoring and enforcement efforts, partly attributed to limited data and technology. To support an improved monitoring system in the VMD, this study investigates the spatiotemporal changes in sand mining hotspots and their underlying drivers.

View Article and Find Full Text PDF

Groundwater salinization is one of the most severe environmental problems in coastal aquifers worldwide, causing exceeding salinity in groundwater supply systems for many purposes. High salinity concentration in groundwater can be detected several kilometers inland and may result in an increased risk for coastal water supply systems and human health problems. This study investigates the impacts of groundwater pumping practices and regional groundwater flow dynamics on groundwater flow and salinity intrusion in the coastal aquifers of the Vietnamese Mekong Delta using the SEAWAT model-a variable-density groundwater flow and solute transport model.

View Article and Find Full Text PDF

Vietnam Mekong Delta (VMD), the country's most important food basket, is constantly threatened by drought-infused salinity intrusion (SI). The SI disaster of 2020 is recognized as the worst in recent decades, hence inspiring this perspective article. The authors' viewpoints on the disaster's impacts and causes are presented.

View Article and Find Full Text PDF

This paper assesses the recently intensified saline water intrusion (SI) and drought in the Vietnamese Mekong Delta (VMD). While the existing literature predominantly points the cause of drought to the hydropower dams in the upstream of the Mekong Basin, we contribute new physical evidence of the intensification of saline water intrusion (through backwater effect) in the VMD caused by three anthropogenic drivers: riverbed incision (due to both riverbed mining and dam construction), sea level rise and land subsidence. Thereupon, we highlight that it is critical to not underestimate the impacts from the localized factors, especially the riverbed-mining which can incise the channel by up to 15 cm/year and amplify the salinity intrusion.

View Article and Find Full Text PDF

Natural resources of the Mekong River are essential to livelihood of tens of millions of people. Previous studies highlighted that upstream hydro-infrastructure developments impact flow regime, sediment and nutrient transport, bed and bank stability, fish productivity, biodiversity and biology of the basin. Here, we show that tidal amplification and saline water intrusion in the Mekong Delta develop with alarming paces.

View Article and Find Full Text PDF