Publications by authors named "Do-kyeong Ko"

In this study, the ultrafast photo-induced carrier dynamics of red-emitting PQDs during structural degradation was investigated using time-resolved transient absorption spectroscopy. The spectroscopic analysis revealed how the carrier dynamics varied when PQDs were exposed to a polar solvent. Three decay modes (carrier trapping, radiative carrier recombination and trap-assisted non-radiative recombination) were proposed to analyze the carrier dynamics of PQDs.

View Article and Find Full Text PDF

By utilizing a multimodal nonlinear optical system that combines coherent anti-Stokes Raman scattering and second harmonic generation to investigate biological characteristics of dermal tissues ex vivo, we demonstrate the potential feasibility of using this optical approach as a powerful new investigative tool for future biomedical research. For this study, our optical system was utilized for the first time to analyze lipid and collagen profiles in cereblon knockout (KO) mouse skin, and we were able to discover significant alterations in the number of carbon-carbon double bonds (wild-type vs. cereblon KO; N : 0.

View Article and Find Full Text PDF

Since the great success of optical communications utilizing orbital angular momentum (OAM), increasing the number of addressable spatial modes in the given physical resources has always been an important yet challenging problem. The recent improvement in measurement resolution through deep-learning techniques has demonstrated the possibility of high-capacity free-space optical communications based on fractional OAM modes. However, due to a tiny gap between adjacent modes, such systems are highly susceptible to external perturbations such as atmospheric turbulence (AT).

View Article and Find Full Text PDF

Structured light with spatial degrees of freedom (DoF) is considered a potential solution to address the unprecedented demand for data traffic, but there is a limit to effectively improving the communication capacity by its integer quantization. We propose a data transmission system using fractional mode encoding and deep-learning decoding. Spatial modes of Bessel-Gaussian beams separated by fractional intervals are employed to represent 8-bit symbols.

View Article and Find Full Text PDF

Understanding the excited-state dynamics in perovskite photovoltaics is necessary for progress in these materials, but changes in dynamics depending on the fabrication processes used for perovskite photoactive layers remain poorly characterised. Here we report a comparative study on femtosecond transient absorption (TA) in CHNHPbI perovskite films fabricated by various solution-processing methods. The grain sizes and the number of voids between grains on each film varied according to the film synthesis method.

View Article and Find Full Text PDF

Fluorine (F) substitution on conjugated polymers in polymer solar cells (PSCs) has a diverse effect on molecular properties and device performance. We present a series of three D-A type conjugated polymers (PBT, PFBT, and PDFBT) based on dithienothiophene and benzothiadiazole units with different numbers of F atoms to explain the influence of F substitution by comparing the molecular interactions of the polymers and the recombination kinetics in PSCs. The preaggregation behavior of PFBT and PDFBT in o-DCB at the UV-vis absorption spectra proves that both polymers have strong intermolecular interactions.

View Article and Find Full Text PDF

Hybrid structures of silicon with organic-inorganic perovskites are proposed for optically controllable switching of terahertz (THz) waves over a broad spectral range from 0.2 to 2THz. A 532-nm external laser was utilized to generate photoexcited free carriers at the devices and consequentially to control the terahertz amplitude modulation, obtaining a depth of up to 68% at a laser irradiance of 1.

View Article and Find Full Text PDF

The femtosecond transient absorption (TA) characterization of a new benzothiadiazole (BT)-based donor-acceptor conjugated copolymer, poly[(2,6-dithieno[3,2-b:2',3'-d]thiophene)-alt-(4,7-di(4-octyldodecylthiopen-2-yl)-2,1,3-benzo[c][1,2,5]thiadiazole (PBT), as well as its fluorinated derivatives, PFBT and PDFBT, is carried out. Additionally, bulk heterojunction (BHJ) films consisting of the copolymers and [6,6]-phenyl-C71 -butylic acid methyl ester (PC70 BM) are examined using TA spectroscopy. Both the singlet excited state dynamics in the copolymers and the charge transfer state dynamics in the BHJs are investigated in terms of fluorination dependency; the fluorinated copolymers exhibit less singlet exciton recombination rate than the fluorine-free copolymer, and the BHJs including the fluorinated copolymers display slower monomolecular recombination than the fluorine-free analogue.

View Article and Find Full Text PDF

We developed multimodal multiphoton microspectroscopy using a small-diameter probe with gradient-index lenses and applied it to unstained Alzheimer's disease (AD) brain samples. Our system maintained the image quality and spatial resolution of images obtained using an objective lens of similar numerical aperture. Multicolor images of AD brain samples were obtained simultaneously by integrating two-photon excited fluorescence and second-harmonic generation on a coherent anti-Stokes Raman scattering (CARS) microendoscope platform.

View Article and Find Full Text PDF

To extract optical constants of nontransmitted samples in the terahertz (THz) spectral region, we employ a THz emitter-sample hybrid structure where THz pulses are generated at the emitter surface and multiply reflected at the interface between the THz emitter and the sample. Since each THz electric field profile appears well separated in a time domain, we could obtain the amplitude and phase spectra for each pulse from the Fourier transform, and determine the optical constants of the sample numerically based on the Fresnel equations. We applied this technique for doped semiconductors, and found that obtained optical constants are in good agreement with the values determined by using other conventional THz techniques.

View Article and Find Full Text PDF

A broadband green light source was demonstrated using a tandem-poled lithium niobate (TPLN) crystal. The measured wavelength and temperature bandwidth were 6.5 nm and 100 °C, respectively, spectral bandwidth was 36 times broader than the periodically poled case.

View Article and Find Full Text PDF

A multimodal multiphoton nonlinear optical (NLO) microspectroscopy imaging system was developed using a femtosecond laser and a photonic crystal fiber. Coherent anti-Stokes Raman scattering (CARS) microspectroscopy was combined with two-photon excitation fluorescence and second-harmonic generation microscopy in one platform and the system was applied to diagnose liver fibrosis. Normal and liver fibrosis tissues were clearly distinguished with the great difference from CARS spectra as well as multimodal multiphoton NLO images.

View Article and Find Full Text PDF

The coherent control of optical images has garnered attention because all information embedded in optical images is expected to be controlled in a parallel way. One of the most important control processes is switch for information delivery. We experimentally demonstrated phase-controlled optical image switching in a double-Λ system where the transmission of the image through a medium was switched.

View Article and Find Full Text PDF

The reconstruction of an object with a method using a dual exposure single inverse Fourier transform is investigated. The method calculates phase information in the Fourier plane to perform the inverse Fourier transform. The phase information in the Fourier plane is calculated from the intensity distributions formed by an object with and without a reference electric field.

View Article and Find Full Text PDF

Experimental proof-of-concept is presented for a quasi-holographic solution to polarization-sensitive optical coherence tomography (PS OCT). Due to decoupling between the reference and sample beams by polarization, the solution seems acceptable to acquisition and communication of optical data in the nonlaboratory environment. The nonlab environment implies uncontrollable disturbances, e.

View Article and Find Full Text PDF

Electromagnetically induced transparency (EIT) was observed with transient optical response of exciton correlation in GaAs/AlGaAs quantum well structure. Decoherence of EIT was increased with temperature (12-60 K), which could be simulated by increasing non-radiation decay rate between coherently coupled ground states in Bloch equation for Lambda type three level. The non-radiation decay was mainly due to hole spin dephasing in the system for EIT via coulomb correlation.

View Article and Find Full Text PDF

We have demonstrated the bandwidth control of a Ti-diffused periodically poled LiNbO(3) (Ti:PPLN) Solc filter by a temperature-gradient-control technique. Up to 2.8 nm of filtering bandwidth was achieved with a simple temperature-gradient-control technique in a 78-mm-long of Ti:PPLN waveguide, which has a 0.

View Article and Find Full Text PDF

We demonstrate spatial control of optical near-fields by femtosecond phase shaping in one-dimensional plasmonic structures. The near-field images display striking temporal-phase dependence, switching between double- and single-peak images within one lattice constant. The change of the near-field distribution is studied in the time and spectral domain.

View Article and Find Full Text PDF

A method for reconstructing wavefront aberrations from intensity measurements in the focal plane of a focusing optic is presented. This reconstruction method is simple, fast, and accurate in reconstructing wavefront aberrations because it uses the inverse Fourier transform of an intensity distribution in the focal plane with a reference electric field. The validity of the reconstruction method is demonstrated by computing a wavefront aberration from the intensity distributions in the focal plane.

View Article and Find Full Text PDF

We have investigated the dispersion and birefringence of an irregularly microstructured fiber with an elliptic silica core and irregular airholes. The polarization-dependent output power through the fiber reveals two well-defined principal-axis modes despite the irregularity of airholes. The dispersion of the fiber is measured in the range of 680 to 1000 nm using the Mach-Zehnder interferometric technique with sub-10 fs laser pulses, which yield two zero dispersion wavelengths at 683 and 740 nm for the two principal modes, respectively.

View Article and Find Full Text PDF

The electrochemical etching of a metal wire with an attached mass at the end of the immersed wire is a new technique to enhance the yield rate of sharp tips. Unlike conventional electrochemical etching, the yield rate of sharp tips with subhundred nanometer apex could be increased up to around 60% with the attached mass method. In this article, the effects of the magnitude of attached mass and the taping material used for attachment on the yield rate and tip shape are investigated.

View Article and Find Full Text PDF
Article Synopsis
  • The study introduces a method for improving the stability of carrier-envelope-phase (CEP) stabilization over long periods by using a double feedback loop and enhanced signal detection.
  • A homodyne balanced detection technique is utilized to minimize dc noise in the beat signal, which helps in effectively monitoring CEP noise at low offset frequencies.
  • The implementation of dual feedback mechanisms significantly decreased phase jitter from 50 mrad to 29 mrad, enabling stable operation for over 12 hours.
View Article and Find Full Text PDF
Article Synopsis
  • Developed an innovative all-fiber band-rejection filter using a helicoidal long-period fiber grating with opposite helicities, allowing for flexible control of rejection bandwidth.
  • The fabrication process and operational principles of the tunable filter are thoroughly outlined.
  • Achieves unique bandwidth tuning capabilities over 14 nm with a rejection level of 15 dB, while maintaining low insertion loss and reduced polarization-dependent loss through torsion stress adjustments.
View Article and Find Full Text PDF

A novel method of reconstructing wavefront aberrations by use of Zernike polynomials for radial shearing interferometers is discussed. This method uses matrix formalism to calculate the Zernike coefficients of a wavefront under test and shows the validity of reconstructing an arbitrary wavefront aberration from an interferogram taken by a radial shearing interferometer. We also propose a new interferometer setup to determine the shape and the direction (concave or convex) of wavefront aberration in a single measurement.

View Article and Find Full Text PDF

We propose and demonstrate a tunable Q-switched erbium doped fiber laser with a digitally controlled micro-mirror array device. The tunable and pulsed output of the laser was achieved by the pixelated spatial modulation of the micro-mirror array. The wavelength tuning from 1530 nm to 1555 nm was shown with wavelength selectivity of ~0.

View Article and Find Full Text PDF