Recombinant GH16B β-agarase-catalyzed liquefaction of 5-7 %(w/v) melted agarose at 50 °C completely hydrolyzed agarose into neoagarohexaose (NA6) and neoagarotetraose (NA4). Subsequent saccharification by recombinant GH50A β-agarase or recombinant GH50A β-agarase/recombinant GH117A α-neoagarobiose hydrolase at 35 °C converted NA6/NA4 into neoagarobiose (NA2) or 3,6-anhydro-L-galactose (L-AHG)/D-galactose, respectively. Purification of NA6/NA4 and NA2 was achieved by Sephadex G-15 column chromatography, while L-AHG was purified by Sephadex G-10, achieving ≥ 98 % purity.
View Article and Find Full Text PDFIn vitro antitumor activity of the CDK7 inhibitor BS-181 against human T-ALL Jurkat cells was determined. Treatment of Jurkat clones (JT/Neo) with BS-181 caused cytotoxicity and several apoptotic events, including TRAIL/DR4/DR5 upregulation, c-FLIP down-regulation, BID cleavage, BAK activation, ΔΨ loss, caspase-8/9/3 activation, and PARP cleavage. However, the BCL-2-overexpressing Jurkat clone (JT/BCL-2) abrogated these apoptotic responses.
View Article and Find Full Text PDFA flavonoid antioxidant quercetin promotes dose-dependent activation of the ATM-CHK-p53 pathway, downregulation of antiapoptotic survivin, and upregulation of proapoptotic NOXA in human T cell acute lymphoblastic leukemia Jurkat clones (J/Neo and J/BCL-XL). However, the downregulation of antiapoptotic BAG3 and MCL-1 occurred in J/Neo cells but not in J/BCL-XL cells overexpressing BCL-XL. Additionally, several BCL-XL-sensitive intrinsic mitochondrial apoptotic events including apoptotic sub-G cell accumulation, TUNEL-positive DNA fragmentation, BAK activation, mitochondrial membrane potential (m) loss, caspase-9/caspase-8/caspase-3 activation, and PARP cleavage were induced only in J/Neo cells.
View Article and Find Full Text PDFThe cytoprotective mechanism of l-serine against oxidative stress-mediated neuronal apoptosis was investigated in mouse hippocampal neuronal HT22 cells. Treatment with the reactive oxygen species (ROS) inducer 2,3-dimethoxy-1,4-naphthoquinone (DMNQ) increased cytosolic and mitochondrial ROS and apoptosis, without necrosis, in HT22 cells. ROS-mediated apoptosis was accompanied by the induction of the endoplasmic reticulum (ER) stress-mediated apoptotic pathway, involving CHOP/GADD153 upregulation, JNK and p38 MAPK activation, and caspase-12 and caspase-8 activation, and subsequent induction of the mitochondrial apoptotic pathway through BAK and BAX activation, mitochondrial membrane potential (Δψm) loss, caspase-9 and caspase-3 activation, PARP cleavage, and nucleosomal DNA fragmentation.
View Article and Find Full Text PDFThe inhibitory mechanism of 2-carbomethoxy-2,3-epoxy-3-prenyl-1,4-naphthoquinone (CMEP-NQ) against apoptosis induced by the microtubule-damaging agents (MDAs), nocodazole (NOC) and 2-methoxyestradiol (2-MeO-E2), or a DNA-damaging agent (DDA), camptothecin (CPT) were investigated in human Jurkat T cell clones (J/Neo and J/BCL-XL cells). Treatment of J/Neo cells with NOC, 2-MeO-E2, or CPT caused cytotoxicity and apoptotic DNA fragmentation but these events were significantly attenuated in the presence of CMEP-NQ. Although not only MDA (NOC or 2-MeO-E2)-induced mitotic arrest, CDK1 activation, and BCL-2, BCL-XL and BIM phosphorylation, but also DDA (CPT)-induced S-phase arrest and ATM-CHK1/CHK2-p53 pathway activation were not or were barely affected in the presence of CMEP-NQ, the levels of anti-apoptotic BAG3 and MCL-1, which were markedly downregulated after MDA- or DDA-treatment, were rather elevated by CMEP-NQ.
View Article and Find Full Text PDFCis-trimethoxy resveratrol (cis-3M-RES) induced dose-dependent cytotoxicity and apoptotic DNA fragmentation in Jurkat T cell clones (JT/Neo); however, it induced only cytostasis in BCL-2-overexpressing cells (JT/BCL-2). Treatment with 0.25 μM cis-3M-RES induced G/M arrest, BAK activation, Δψm loss, caspase-9 and caspase-3 activation, and poly (ADP-ribose) polymerase (PARP) cleavage in JT/Neo cells time-dependently but did not induce these events, except G/M arrest, in JT/BCL-2 cells.
View Article and Find Full Text PDFThe repressive role of p53 on the human mitotic centromere-associated kinesin (MCAK) core promoter from ‒266 to +54, relative to the transcription start site, has been determined. The MCAK mRNA and protein levels were 2.1- and 3.
View Article and Find Full Text PDFEthnopharmacological Relevance: The roots of Rubia cordifolia L. have been widely used as a traditional herbal medicine in Northeast Asia for treating inflammatory diseases.
Aim Of The Study: To elucidate the anti-inflammatory mechanism of 2-carbomethoxy-2,3-epoxy-3- prenyl-1,4-naphthoquinone (CMEP-NQ), purified from the roots of R.
Human lysosomal-associated protein multispanning membrane 5 (LAPTM5) was identified by an ordered differential display-polymerase chain reaction (ODD-PCR) as an up-regulated cDNA fragment during 12-O-tetradecanoylphorbol 13-acetate (TPA)-induced differentiation of U937 cells into monocytes/macrophages. After TPA-treatment, the levels of LAPTM5 mRNA and protein increased and reached a maximum at 18-36 h. In healthy human tissues, LAPTM5 mRNA was expressed at high levels in hematopoietic cells and tissues, at low levels in the lung and fetal liver, and was not detected in other non-hematopoietic tissues.
View Article and Find Full Text PDFTo examine the pro-apoptotic role of the human ortholog (YPEL5) of the Yippee protein, the cell viability of mutant strain with deleted , the yeast ortholog, was compared with that of the wild-type (WT)- strain after exposure to different apoptogenic stimulants, including UV irradiation, methyl methanesulfonate (MMS), camptothecin (CPT), heat shock, and hyperosmotic shock. The Δ mutant exhibited enhanced cell viability compared with the WT- strain when treated with lethal UV irradiation, 1.8 mM MMS, 100 µ CPT, heat shock at 50°C, or 1.
View Article and Find Full Text PDFTreatment of Jurkat T cells with the dynamin inhibitor, myristyl trimethyl ammonium bromides (MiTMAB) caused cytokinesis impairment and apoptotic DNA fragmentation along with down-regulation of anti-apoptotic BAG3 and Mcl-1 levels, Bak activation, mitochondrial membrane potential (Δψm) loss, activation of caspase-9 and -3, and PARP cleavage, without accompanying necrosis. Bcl-xL overexpression completely abrogated these MiTMAB-induced mitochondrial damage and resultant caspase cascade activation, except for impaired cytokinesis and down-regulated BAG3 and Mcl-1 levels. Additionally, autophagic responses including Akt-mTOR pathway inhibition, formation of acridine orange-stainable acidic vesicular organelles, LC3-I/II conversion, and p62/SQSTM1 down-regulation were detected regardless of Bcl-xL overexpression.
View Article and Find Full Text PDFTwo new fatty acid derivatives, echinochlorins A (8) and B (9) and a racemic lignan, (±)-anti-1-(4-hydroxy-3-methoxyphenyl)-2-{4-[(E)-3-acetoxypropen-1-yl]-2-methoxyphenoxy}propan-1,3-diol 3-acetate (1), were isolated from Echinochloa utilis grains, along with six known lignans (2-7) and two fatty acid derivatives (10, 11). Their structures were established by spectroscopic data analyses (IR, UV, HR-FABMS, GC-MS, and 1D and 2D NMR). The configuration of 1 was determined by Mosher's method.
View Article and Find Full Text PDFThe effect of kaempferol (3,5,7,4-tetrahydroxyflavone), a flavonoid compound that was identified in barnyard millet (Echinochloa crus-galli var. frumentacea) grains, on G2-checkpoint and apoptotic pathways was investigated in human acute leukemia Jurkat T cell clones stably transfected with an empty vector (J/Neo) or a Bcl-xL expression vector (J/Bcl-xL). Exposure of J/Neo cells to kaempeferol caused cytotoxicity and activation of the ATM/ATR-Chk1/Chk2 pathway, activating the phosphorylation of p53 (Ser-15), inhibitory phosphorylation of Cdc25C (Ser-216), and inactivation of cyclin-dependent kinase 1 (Cdk1), with resultant G2- arrest of the cell cycle.
View Article and Find Full Text PDFPurpose: Recently, enzymes of the serine synthetic pathway (SSP) have been suggested as key player in the metabolic adaptation of oncogenesis. We assessed the expression of enzymes of the SSP in colonic tumor tissue (TT) and paired normal tissue (pNT) and the prognostic implications.
Methods: From 2006 to 2010, we included 486 patients with colon cancer who underwent curative surgery at Kyungpook National University Hospital.
The present study sought to determine the correlation between 2-methoxyestradiol (2-MeO-E2)-induced cell cycle arrest and 2-MeO-E2-induced apoptosis. Exposure of Jurkat T cell clone (JT/Neo) to 2-MeO-E2 (0.5-1.
View Article and Find Full Text PDFExposure of human Jurkat T cells to JNK inhibitor IX (JNKi), targeting JNK2 and JNK3, caused apoptotic DNA fragmentation along with G2/M arrest, phosphorylation of Bcl-2, Mcl-1, and Bim, Δψm loss, and activation of Bak and caspase cascade. These JNKi-induced apoptotic events were abrogated by Bcl-2 overexpression, whereas G2/M arrest, cyclin B1 up-regulation, Cdk1 activation, and phosphorylation of Bcl-2 family proteins were sustained. In the concomitant presence of the G1/S blocking agent aphidicolin and JNKi, the cells underwent G1/S arrest and failed to induce all apoptotic events.
View Article and Find Full Text PDFTo examine the effect of tumor suppressor protein p53 on the antitumor activity of 2- methoxyestradiol (2-MeO-E2), 2-MeO-E2-induced cell cycle changes and apoptotic events were compared between the human colon carcinoma cell lines HCT116 (p53(+/+)) and HCT116 (p53(-/-)). When both cell types were exposed to 2-MeO-E2, a reduction in the cell viability and an enhancement in the proportions of G2/M cells and apoptotic sub-G1 cells commonly occurred dose-dependently. These 2-MeO-E2-induced cellular changes, except for G2/M arrest, appeared to be more apparent in the presence of p53.
View Article and Find Full Text PDFDimethyl fumarate (DMF) has several pharmacological benefits including immunomodulation and prevention of fibrosis, which are dependent on the NF-E2-related factor 2 (Nrf2) antioxidant pathways. Therefore, we hypothesized that DMF could attenuate vascular calcification via Nrf2 activation. Vascular calcification induced by hyperphosphataemia was significantly inhibited by DMF in vascular smooth muscle cells (VSMCs) in a dose-dependent manner.
View Article and Find Full Text PDFMurine resting (G(0)) T lymphocytes contained no detectable mRNA of 3-phosphoglycerate dehydrogenase (PHGDH) catalyzing the first step in the phosphorylated pathway of l-serine biosynthesis. Immobilized anti-CD3 activation of G(0) T cells expressed the PHGDH mRNA in G(1) with a maximum level in S phase. G(0) T cells activated with either immobilized anti-CD3 plus CsA or PBu(2), which failed to drive the activated T cells to enter S phase, did not express the PHGDH mRNA unless exogenous rIL-2 was added.
View Article and Find Full Text PDFTreatment of Jurkat T cells with the microtubule-depolymerizing agent nocodazole (NOC) caused prometaphase arrest and apoptosis. NOC-induced mitochondrial apoptotic events including Bak activation, Δψm loss, cytochrome c release, and caspase cascade activation were blocked by Bcl-2 overexpression. However, mitotic arrest, Cdc25C activation, upregulation of cyclin B1 levels, Cdk1 activation, Bcl-2 phosphorylation at Thr-56 and Ser-70, and Bim phosphorylation were retained.
View Article and Find Full Text PDFIn Jurkat T cell clone (JT/Neo), G2/M arrest, apoptotic sub-G1 peak, mitochondrial membrane potential (Δψm) loss, and TUNEL-positive DNA fragmentation were induced following exposure to 17α-estradiol (17α-E2), whereas none of these events (except for G2/M arrest) were induced in Jurkat cells overexpressing Bcl-2 (JT/Bcl-2). Under these conditions, phosphorylation at Thr161 and dephosphorylation at Tyr15 of Cdk1, upregulation of cyclin B1 level, histone H1 phosphorylation, Cdc25C phosphorylation at Thr-48, Bcl-2 phosphorylation at Thr-56 and Ser-70, Mcl-1 phosphorylation, and Bim phosphorylation were detected in the presence of Bcl-2 overexpression. However, the 17α-E2-induced upregulation of Bak levels, activation of Bak, activation of caspase-3, and PARP degradation were abrogated by Bcl-2 overexpression.
View Article and Find Full Text PDFExposure of human Jurkat T cells to aruncin B, purified from Aruncus dioicus, caused apoptosis along with microtubule damage, G(2)/M-arrest, Bcl-2 phosphorylation, Bak activation, mitochondrial membrane potential (Δψm) loss, cytochrome c release, activation of multiple caspases, and PARP degradation. Analyses by employing Bcl-2 overexpression and selective caspase inhibitors revealed that G(2)/M-arrest and Bcl-2 phosphorylation occurred prior to mitochondria-dependent activation of caspase-9, -3, and -8. The IC(50) values for human resting T cells, activated T cells, and Jurkat T cells were >60μg/ml, 49μg/ml, and 22μg/ml, respectively.
View Article and Find Full Text PDF