Publications by authors named "Do Won Kang"

Mirrors for atoms and molecules are essential tools for matter-wave optics with neutral particles. Their realization has required either a clean and atomically smooth crystal surface, sophisticated tailored electromagnetic fields, nanofabrication, or particle cooling because of the inherently short de Broglie wavelengths and strong interactions of atoms with surfaces. Here, we demonstrate reflection of He atoms from inexpensive, readily available, and robust gratings designed for light waves.

View Article and Find Full Text PDF

The conformational structures of heterocyclic compounds are of considerable interest to chemists and biochemists as they are often the constituents of natural products. Among saturated four-membered heterocycles, the conformational structure of oxetane is known to be slightly puckered in equilibrium because of a low interconversion barrier in its ring-puckering potential, unlike cyclobutane and thietane. We measured the one-photon vacuum ultraviolet mass-analyzed threshold ionization (VUV-MATI) and two-photon IR+VUV-MATI spectra of oxetane for the first time to determine the ring-puckering potential of the oxetane cation and hence its conformational structure in the D (ground) state.

View Article and Find Full Text PDF

Isolating and identifying the conformational forms of molecules are imperative processes to investigate the chemical reaction pathways of individual conformers. Herein, we explored the conformational structures of tetrahydropyran in the neutral (S0) and cationic (D0) states by varying the supersonic expansion conditions using one-photon vacuum ultraviolet mass-analyzed threshold ionization (VUV-MATI) spectroscopy. The constructed 2D potential energy surfaces associated with conformational interconversion between the chair and boat forms in the S0 and D0 states revealed that the ionic transitions observed in the MATI spectra correspond to the most stable chair conformer.

View Article and Find Full Text PDF

Ring conformations of 3,4-dihydro-2H-pyran (34DHP) have attracted considerable interest owing to their structural similarity to cyclohexene, an important molecule in stereochemistry. In this study, we investigated the conformational interconversion of 34DHP in both the neutral (S0) and the cationic (D0) ground states. High-resolution vacuum ultraviolet mass-analyzed threshold ionization (VUV-MATI) spectroscopy was utilized to obtain information regarding the adiabatic ionic transition between the S0 and the D0 states.

View Article and Find Full Text PDF

Alkylpyrazines, which are well-known as aromatic substances and traditional medicines, are interesting molecular systems, and their methyl conformations result in unique structural and dynamical properties. We explored the conformational preference of the methyl group and the highest occupied molecular orbitals (HOMOs) of 2-methylpyrazine and its cation by utilizing high-resolution one-photon vacuum ultraviolet mass-analyzed threshold ionization (VUV-MATI) spectroscopy and natural bond orbital analysis to understand the relevant molecular activities. The measured VUV-MATI spectrum of 2-methylpyrazine revealed its adiabatic ionization energy and the vibrational frequencies of its cation.

View Article and Find Full Text PDF

One-photon vacuum ultraviolet mass-analyzed threshold ionization (VUV-MATI) spectroscopy was used to characterize the essential conformations of tetrahydrofuran (THF) and thus determine the stereochemistry of the furanose ring constituting the backbones of DNA and RNA. Since the VUV-MATI spectrum of THF exactly corresponds to the vibrational spectrum of the gas-phase THF cation, the above cation was detected using time-of-flight mass spectrometry featuring the delayed pulsed-field ionization of the target in high Rydberg states by scanning the wavelength of the VUV pulse across the region of the vibrational spectrum. The position of the 0-0 band in the recorded VUV-MATI spectrum was extrapolated to the zero-field limit, allowing the adiabatic ionization energy of THF to be accurately estimated to be 9.

View Article and Find Full Text PDF

Ionization energies and cationic structures of pyridine were intensively investigated utilizing one-photon mass-analyzed threshold ionization (MATI) spectroscopy with vacuum ultraviolet radiation generated by four-wave difference frequency mixing in Kr. The present one-photon high-resolution MATI spectrum of pyridine demonstrated a much finer and richer vibrational structure than that of the previously reported two-photon MATI spectrum. From the MATI spectrum and photoionization efficiency curve, the accurate ionization energy of the ionic ground state of pyridine was confidently determined to be 73,570 ± 6 cm(-1) (9.

View Article and Find Full Text PDF