While cytochrome P450 (CYP; P450) enzymes are commonly associated with the metabolism of organic xenobiotics and drugs or the biosynthesis of organic signaling molecules, they are also impacted by a variety of species. Metallic nanoparticles, clusters, ions, and complexes can alter CYP expression, modify enzyme interactions with reductase partners, and serve as direct inhibitors. This commonly overlooked topic is reviewed here, with an emphasis on understanding the structural and physiochemical basis for these interactions.
View Article and Find Full Text PDFRuthenium complexes are often investigated as potential replacements for platinum-based chemotherapeutics in hopes of identifying systems with improved tolerability and reduced susceptibility to cellular resistance mechanisms. Inspired by phenanthriplatin, a non-traditional platinum agent that contains only one labile ligand, monofunctional ruthenium polypyridyl agents have been developed, but until now, few demonstrated promising anticancer activity. Here we introduce a potent new scaffold, based on [Ru(tpy)(dip)Cl]Cl (tpy = 2,2':6',2''-terpyridine and dip = 4,7-diphenyl-1,10-phenanthroline) in pursuit of effective Ru(ii)-based monofunctional agents.
View Article and Find Full Text PDFThe cytochrome P450 family of enzymes (CYPs) are important targets for medicinal chemistry. Recently, CYP1B1 has emerged as a key player in chemotherapy resistance in the treatment of cancer. This enzyme is overexpressed in a variety of tumors, and is correlated with poor treatment outcomes; thus, it is desirable to develop CYP1B1 inhibitors to restore chemotherapy efficacy.
View Article and Find Full Text PDFThe β-diketone scaffold is a commonly used synthetic intermediate, and is a functional group found in natural products such as curcuminoids. This core structure can also act as a chelating ligand for a variety of metals. In order to assess the potential of this scaffold for medicinal inorganic chemistry, seven different κ-O,O'-chelating ligands were used to construct Ru(II) complexes with polypyridyl co-ligands, and their biological activity was evaluated.
View Article and Find Full Text PDFPolypyridyl coordinating ligands are common in metal complexes used in medicinal inorganic chemistry. These ligands possess intrinsic cytotoxicity, but detailed data on this phenomenon are sparse, and cytotoxicity values vary widely and are often irreproducible. To provide new insights into the biological effects of bipyridyl-type ligands and structurally related metal-binding systems, reports of free ligand cytotoxicity were reviewed.
View Article and Find Full Text PDFIn an earlier study of π-expansive ruthenium complexes for photodynamic and photochemo-therapies, it was shown that a pair of structural isomers differing only in the connection point of a naphthalene residue exhibited vastly different biological activity. These isomers are further explored in this paper through the activity of their functionalized derivatives. In normoxia, the inactive 2-NIP isomer (5) can be made as photocytotoxic as the active 1-NIP isomer (1) by functionalizing with methyl or methoxy groups, while methoxy variants of the 1-NIP isomer became inactive.
View Article and Find Full Text PDFFour structurally distinct classes of polypyridyl ruthenium complexes containing avobenzone exhibited low micromolar and submicromolar potencies in cancer cells, and were up to 273-fold more active than the parent ligand. Visible light irradiation enhanced the cytotoxicity of some complexes, making them promising candidates for combined chemo-photodynamic therapy.
View Article and Find Full Text PDFThe discovery of new light-triggered prodrugs based on ruthenium (II) complexes is a promising approach for photoactivated chemotherapy (PACT). The light-mediated activation of "strained" Ru(II) polypyridyl complexes resulted in ligand release and produced a ligand-deficient metal center capable of forming covalent adducts with biomolecules such as DNA. Based on the strategy of exploiting structural distortion to activate photochemistry, biologically active small molecules were coordinated to a Ru(II) scaffold to create light-triggered dual-action agents.
View Article and Find Full Text PDFRu(II) complex photocages are used in a variety of biological applications, but the thermal stability, photosubstitution quantum yield, and biological compatibility of the most commonly used Ru(II) systems remain unoptimized. Here, multiple compounds used in photocaging applications were analyzed and found to have several unsatisfactory characteristics. To address these deficiencies, three new scaffolds were designed to improve key properties through modulation of a combination of electronic, steric, and physiochemical features.
View Article and Find Full Text PDFCoordination complexes can be used to photocage biologically active ligands, providing control over the location, time, and dose of a delivered drug. Dual action agents can be created if both the ligand released and the ligand-deficient metal center effect biological processes. Ruthenium(ii) complexes coordinated to pyridyl ligands generally are only capable of releasing one ligand in H2O, wasting equivalents of drug molecules, and producing a Ru(ii) center that is not cytotoxic.
View Article and Find Full Text PDF8-Hydroxyquinolines (HQ), including clioquinol, possess cytotoxic properties and are widely used as ligands for metal-based anticancer drug research. The number and identity of substituents on the HQ can have a profound effect on activity for a variety of inorganic compounds. Ruthenium complexes of HQ exhibit radically improved potencies, and operate by a new, currently unknown, mechanism of action.
View Article and Find Full Text PDFRuthenium complexes capable of light-triggered cytotoxicity are appealing potential prodrugs for photodynamic therapy (PDT) and photoactivated chemotherapy (PACT). Two groups of Ru(II) polypyridyl complexes with 2-(2-pyridyl)-benzazole ligands were synthesized and investigated for their photochemical properties and anticancer activity to compare strained and unstrained systems that are likely to have different biological mechanisms of action. The structure-activity relationship was focused on the benzazole core bioisosterism and replacement of coligands in Ru(II) complexes.
View Article and Find Full Text PDFThe article presents the synthesis of 5-ene-4-thiazolidinone derivatives with pyrazole core linked by enamine group. The structure and purity of compounds were confirmed by analytical and spectral data including X-ray analysis. Target compounds were screened for their anticancer activity and selective antileukemic action was confirmed.
View Article and Find Full Text PDFThe features of the chemistry of 4-thiazolidinone and pyrazole/pyrazolines as pharmacologically attractive scaffolds were described in a number of reviews in which the main approaches to the synthesis of mentioned heterocycles and their biological activity were analyzed. However, the pyrazole/pyrazoline-thiazolidine-based hybrids as biologically active compounds is poorly discussed in the context of pharmacophore hybrid approach. Therefore, the purpose of this review is to summarize the data about the synthesis and modification of heterocyclic systems with thiazolidine and pyrazoline or pyrazole fragments in molecules as promising objects of modern bioorganic and medicinal chemistry.
View Article and Find Full Text PDF3D-MoRSE is a very flexible 3D structure encoding framework for chemoinformatics and QSAR purposes due to the range of scattering parameter values and variety of weighting schemes used. While arising in many QSAR studies, up to this time they were considered as hardly interpreted and were treated like a "black box". This study is intended to lift the veil of mystery, providing a comprehensible way to the interpretation of 3D-MoRSE descriptors in QSAR/QSPR studies.
View Article and Find Full Text PDFA series of novel 4-thiazolidinone-pyrazoline conjugates have been synthesized and tested for anti-Trypanosoma brucei activity. Screening data allowed us to identify five thiazolidinone-pyrazoline hybrids, which possess promising trypanocidal activity, with IC50 ≤ 1.2 μM.
View Article and Find Full Text PDFGlioblastoma (GB), the most aggressive brain tumour, and mantle cell lymphoma (MCL), a rare but very aggressive type of lymphoma, are highly resistant to chemotherapy. GB and MCL chemotherapy gives very modest results, the vast majority of patients experience recurrent disease. To find out the new treatment modality for drug-resistant GB and MCL cells, combining of bradykinin (BK) antagonists with conventional temozolomide (TMZ) treatment, and screening of thiazolidinones derivatives were the main objectives of this work.
View Article and Find Full Text PDFPublic databases of NCI-60 tumor cell line screen results and measurements of molecular targets in the NCI-60 panel give the opportunity to assign possible anticancer mechanism to compounds with positive outcome from antitumor assay. Here, the novel protocol of NCI databases mining where inferences are based on the visualization is presented and utilized with the aim to identify putative biological routes of 4-thiazolidinones anticancer effect. As a result, highly potent 4-thiazolidinone-pyrazoline-isatin conjugates show the similarity of activity patterns with puromycin and CBU-028 and their pattern is also highly correlated with fraction of methylated CpG sites in CD34, AF5q31 and SYK.
View Article and Find Full Text PDFA series of novel 5-pyrazoline substituted 4-thiazolidinones have been synthesized. Target compounds were evaluated for their anticancer activity in vitro within DTP NCI protocol. Among the tested compounds, the derivatives 4d and 4f were found to be the most active, which demonstrated certain sensitivity profile toward the leukemia subpanel cell lines with GI₅₀ value ranges of 2.
View Article and Find Full Text PDFThe synthesis and antitumor activity screening of novel 3-[2-(3,5-diaryl-4,5-dihydropyrazol-1-yl)-4-oxo-4,5-dihydro-1,3-thiazol-5-ylidene]-2,3-dihydro-1H-indol-2-ones 1-23 and 3-(3,5-diarylpyrazol-1-yl)-2,3-dihydro-1H-indol-2-ones 24-39 are performed. In vitro anticancer activity of the synthesized compounds was tested by the National Cancer Institute. Most of them displayed anticancer activity on leukemia, melanoma, lung, colon, CNS, ovarian, renal, prostate, and breast cancers cell lines.
View Article and Find Full Text PDFThe synthesis and antitumor activity screening of novel isatin based conjugates with thiazolidine and pyrazoline moieties were performed. Reaction of 3,5-diaryl-4,5-dihydropyrazoles with chloroacetyl chloride yielded starting 2-chloro-1-(3,5-diaryl-4,5-dihydropyrazol-1-yl)-ethanones which were utilized in alkylation of isatin and 5-bromoisatin. Thus, corresponding 1-[2-(3,5-diaryl-4,5-dihydropyrazol-1-yl)-2-oxoethyl]-1H-indole-2,3-diones (1a-1d) have been obtained.
View Article and Find Full Text PDFAntitumor screening of several novel 4-thiazolidinones with benzothiazole moiety has been performed. Reactions of (benzothiazole-2-yl)hydrazine with trithiocarbonyl diglycolic acid or 6-methyl-2-aminobenzothiazole with 2-carbethoxymethylthio-2-thiazoline-4-one have yielded starting 3- (1) or 2-substituted (11) 4-thiazolidinones which have been subsequently utilized in a Knoevenagel condensation for obtaining a series of 5-arylidene derivatives 2-10, 12-16. Compound 11 has been obtained alternatively by a counter synthesis method based on the reaction of 2-chloro-N-(6-methylbenzothiazol-2-yl)-acetamide and ammonium thiocyanate.
View Article and Find Full Text PDFTo examine the anticancer activity several novel thiazolone-based compounds containing 5-aryl-3-phenyl-4,5-dihydro-1H-pyrazol-1-yl framework were obtained. Reaction of 5-aryl-3-phenyl-4,5-dihydropyrazole with 4-thioxo-2-thiazolidinone or 2-carbethoxymethylthio-2-thiazoline-4-one yielded starting 4- (1 and 2) or 2-substituted (11 and 12) thiazolones which were utilized in Knoevenagel condensation for obtaining a series of 5-arylidene derivatives 3-10, 13-18. Alternatively 11, 12 and their 5-arylidene derivatives were synthesized by means of 3-phenyl-5-aryl-1-thiocarbamoyl-2-pyrazoline as S,N-binucleophile via [2+3]-cyclocondensation approach.
View Article and Find Full Text PDF