In this work we study the magnetization of magnetoactive elastomers (MAE) in which the interface between the matrix and magnetic particles is unstable and allows for slipping of the particles against the wall of their elastomer cavities. The estimate of the maximal angle at which each particle can decline its axis from the initial position is made based on cyclic measurement of several consecutive hysteresis loops at different maximal magnetic fields. A model of magnetization of magnetically hard multigrain particles in an elastic environment with allowance for their possible slipping is proposed.
View Article and Find Full Text PDFThe Stoner-Wohlfarth model of a single-domain grain is applied to a complex situation: magnetization of a solid multigrain particle embedded in an elastic medium. In this situation, application of a magnetic field establishes a specific magnetomechanical process: polarization and switching of individual grains change the net energy of the particle and, as a result, make it rotate as a whole relative to the matrix. Because of that coupling, the magnetic hysteresis loop of a particle composed of highly coercive grains progressively shrinks with the increase of the matrix compliance.
View Article and Find Full Text PDFPhys Rev E Stat Nonlin Soft Matter Phys
October 2014
Ferrogels and magnetic elastomers feature mechanical properties that can be reversibly tuned from outside through magnetic fields. Here we concentrate on the question of how their dynamic response can be adjusted. The influence of three factors on the dynamic behavior is demonstrated using appropriate minimal models: first, the orientational memory imprinted into one class of the materials during their synthesis; second, the structural arrangement of the magnetic particles in the materials; and third, the strength of an external magnetic field.
View Article and Find Full Text PDFOne of the central appealing properties of magnetic gels and elastomers is that their elastic moduli can reversibly be adjusted from outside by applying magnetic fields. The impact of the internal magnetic particle distribution on this effect has been outlined and analyzed theoretically. In most cases, however, affine sample deformations are studied and often regular particle arrangements are considered.
View Article and Find Full Text PDFThe formation of structures in a ferrofluid by an applied magnetic field causes various changes in the rheological behaviour of the ferrofluid. A ferrofluid based on clustered iron nanoparticles was investigated. We experimentally and theoretically consider stress relaxation in the ferrofluid under the influence of a magnetic field, when the flow is suddenly interrupted.
View Article and Find Full Text PDF