Publications by authors named "Dmitry V Tsyganov"

Derivatives of natural allylpolyalkoxybenzenes conjugated to triphenylphosphonium (TPP) cations by aliphatic linkers of three, six, seven, and eight atoms were synthesized to examine the role of the polyalkoxybenzene pharmacophore, TPP fragment, and linker length in antiproliferative activities. The key synthetic procedures included (i) hydroboration-oxidation of apiol, dillapiol, myristicin, and allyltetramethoxybenzene; (ii) acylation of polyalkoxybenzyl alcohols or amines; and (iii) condensation of polyalkoxybenzaldehydes followed by hydrogenation and cyclopropyl-homoallyl rearrangement. The targeted TPP conjugates as well as the starting allylbenzenes, the corresponding alkylpolyalkoxybenzenes, and the respective alkyl-TPP salts were evaluated for cytotoxicity in a panel of human cancer cell lines using MTT and Click-iT-EdU assays and in a sea urchin embryo model.

View Article and Find Full Text PDF

A series of both novel and reported combretastatin analogues, including diarylpyrazoles, -isoxazoles, -1,2,3-triazoles, and -pyrroles, were synthesized via improved protocols to evaluate their antimitotic antitubulin activity using in vivo sea urchin embryo assay and a panel of human cancer cells. A systematic comparative structure-activity relationship studies of these compounds were conducted. Pyrazoles 1i and 1p, isoxazole 3a, and triazole 7b were found to be the most potent antimitotics across all tested compounds causing cleavage alteration of the sea urchin embryo at 1, 0.

View Article and Find Full Text PDF
Article Synopsis
  • A six-step protocol was established to synthesize isoflavone glaziovianin A (GVA) and its derivatives from plant metabolites found in dill and parsley seeds.
  • The synthesized compounds were tested for biological activity on seven human cancer cell lines, revealing that GVA and its derivatives exhibited an antimitotic effect, particularly against A375 melanoma cells, while showing low cytotoxicity to healthy cells.
  • Structure-activity relationship studies indicated that certain derivatives were less effective than GVA, with the sea urchin assay confirming the compounds' impact on microtubule destabilization.
View Article and Find Full Text PDF
Article Synopsis
  • Researchers developed new analogues of the natural compound pycnanthulignene D using a streamlined synthesis process.
  • The starting materials, plant allylalkoxybenzenes, are readily sourced from essential oils of sassafras, dill, and parsley.
  • The synthesized compounds showed potential antiproliferative effects in a sea urchin embryo assay, indicating possible applications in biomedical research.
View Article and Find Full Text PDF

A series of polyalkoxy substituted 7-hydroxy- and 7-methoxy-4-aryl-4H-chromenes were evaluated using the sea urchin embryo model to yield several compounds exhibiting potent antimitotic microtubule destabilizing activity. Data obtained by the assay were further confirmed in the NCI60 human cancer cell screen. The replacement of methylenedioxy ring A and lactone ring D in podophyllotoxin analogues by 7-methoxy, 2-NH2, and 3-CN groups in 4-aryl-4H-chromenes resulted in potent antimitotic microtubule destabilizing agents.

View Article and Find Full Text PDF

A regioselective synthesis of both 5-amino- and 3-aminodiarylisoxazoles substituted with polyalkoxyaryl pharmacophores has been validated. Starting materials for the synthetic scheme were easily available from plant extracts. The targeted molecules were further tested in the phenotypic sea urchin embryo assay to identify compounds with antimitotic microtubule destabilizing activity.

View Article and Find Full Text PDF

We have synthesized a series of novel cis-restricted 4,5-polyalkoxydiaryl-3-aminopyrazole analogues of combretastatins via short synthetic sequences using building blocks isolated from dill and parsley seed extracts. The resulting compounds were tested in vivo in the phenotypic sea urchin embryo assay to reveal their antimitotic and antitubulin effects. The most potent aminopyrazole, 14a, altered embryonic cell division at 10 nM concentration, exhibiting microtubule-destabilizing properties.

View Article and Find Full Text PDF

A series of novel 4-oxa-podophyllotoxin derivatives 7 featuring the intact lactone ring D and various substituents in rings B and E has been synthesized and evaluated in a phenotypic sea urchin embryo assay along with the representative 4-aza-analogs 5 for their antimitotic and microtubule destabilizing activity. The most active compounds exhibited myristicin-derived or a 3',5'-dimethoxy substitution pattern in the ring E and a 6-methoxy moiety replacing the methylenedioxy ring A. Compounds 5xb, 5xe, 5yb, 7xa, 7xb, and 7xc showed potent antiproliferative effects in the NCI60 cytotoxicity screen.

View Article and Find Full Text PDF

A series of 4-azapodophyllotoxin derivatives with modified rings B and E have been synthesized using allylpolyalkoxybenzenes from parsley seed oil. The targeted molecules were evaluated in vivo in a phenotypic sea urchin embryo assay for antimitotic and tubulin destabilizing activity. The most active compounds identified by the in vivo sea urchin embryo assay featured myristicin-derived ring E.

View Article and Find Full Text PDF

Polyalkoxybenzenes are plant components displaying a wide range of biological activities. In these studies, we synthesized apiol and dillapiol isoxazoline analogues of combretastatins and evaluated their effect on sea urchin embryos. We have shown that p-methoxyphenyl isoxazoline caused sea urchin embryo immobilization due to the selective excision of motile cilia, whereas long immotile sensory cilia of apical tuft remained intact.

View Article and Find Full Text PDF