Scaling laws inherent for polymer molecules are checked for the linear and branched chains constituting two-dimensional (2D) levitating microdroplet clusters condensed above the locally heated layer of water. We demonstrate that the dimensionless averaged end-to-end distance of the droplet chain r[over ¯] normalized by the averaged distance between centers of the adjacent droplets l[over ¯] scales as r[over ¯]/l[over ¯]∼n^{0.76}, where n is the number of links in the chain, which is close to the power exponent ¾, predicted for 2D polymer chains with excluded volume in the dilution limit.
View Article and Find Full Text PDFA levitating cluster of condensed microdroplets can form over the heated area of a water layer. The thermocapillary (TC) flow at the surface of the water layer combined with the convective flow in the layer often prevents a cluster's stability due to disturbances that it creates in the gas flow over the water surface. The TC flow can be suppressed by introducing small amounts of surfactants into the water layer.
View Article and Find Full Text PDFWater microdroplets condense over locally heated water-vapor interfaces and levitate in an ascending vapor-air flow forming self-assembled ordered monolayer clusters. The droplets do not coalesce due to complex aerodynamic interactions between them. The droplet cluster formation is governed by the condensation/evaporation balance and by coupling of heat flux and vapor flow with aerodynamic forces.
View Article and Find Full Text PDFWe have determined the solution structure of ribosomal protein L18 from Thermus thermophilus. L18 is a 12.5 kDa protein of the large subunit of the ribosome and binds to both 5 S and 23 S rRNA.
View Article and Find Full Text PDF