The electronic structure of a molecular quantum ring (stacks of 40-unit cyclic porphyrin polymers) is characterized via scanning tunneling microscopy and scanning tunneling spectroscopy. Our measurements access the energetic and spatial distribution of the electronic states and, utilizing a combination of density functional theory and tight-binding calculations, we interpret the experimentally obtained electronic structure in terms of coherent quantum states confined around the circumference of the π-conjugated macrocycle. These findings demonstrate that large (53 nm circumference) cyclic porphyrin polymers have the potential to act as molecular quantum rings.
View Article and Find Full Text PDFThe regular packing of atoms, molecules and nanoparticles provides the basis for the understanding of structural order within condensed phases of matter. Typically the constituent particles are considered to be rigid with a fixed shape. Here we show, through a combined experimental and numerical study of the adsorption of cyclic porphyrin polymers, nanorings, on a graphite surface, that flexible molecules can exhibit a rich and complex packing behaviour.
View Article and Find Full Text PDFOn-surface synthesis provides a route for the production of 1D and 2D covalently bonded polymeric structures. Such reactions are confined to the surface of a substrate and the catalytic properties of the substrate are often utilised to initiate the reaction. Recent studies have focused on the properties of various crystallographic planes of metallic substrates, as well as native surface features such as step-edges, in an effort to provide control over the pathway of the reaction and the resultant products.
View Article and Find Full Text PDFCoarse-grained simulation models are developed to study both template-bound and free porphyrin nanoring systems. Key interactions are modeled with relatively simple (and physically motivated) energy functions which allow for relatively facile transfer both between different ring sizes and between the template-bound and free nanoring systems. The effects of varying the model parameters on the respective radii of gyration are determined.
View Article and Find Full Text PDFThe affinity of copper(ii) porphyrins for pyridine ligands is extremely weak, but oligo-pyridine templates can be used to direct the synthesis of Cu-containing cyclic porphyrin oligomers when they also have Zn centers. We report the synthesis of two heterometallated nanorings: a six-porphyrin ring prepared from a Zn/Cu/Zn linear trimer and a ten-porphyrin ring prepared from a Zn/Zn/Cu/Zn/Zn pentamer. Both these macrocycles have copper porphyrins at two specific positions across the diameter of the ring and zinc at other sites.
View Article and Find Full Text PDFThe topology of a conjugated molecule plays a significant role in controlling both the electronic properties and the conformational manifold that the molecule may explore. Fully π-conjugated molecular nanorings are of particular interest, as their lowest electronic transition may be strongly suppressed as a result of symmetry constraints. In contrast, the simple Kasha model predicts an enhancement in the radiative rate for corresponding linear oligomers.
View Article and Find Full Text PDFAdvances in template-directed synthesis make it possible to create artificial molecules with protein-like dimensions, directly from simple components. These synthetic macromolecules have a proclivity for self-organization that is reminiscent of biopolymers. Here, we report the synthesis of monodisperse cyclic porphyrin polymers, with diameters of up to 21 nm (750 C–C bonds).
View Article and Find Full Text PDFJ Phys Chem C Nanomater Interfaces
March 2015
Conjugated polymers with cyclic structures are interesting because their symmetry leads to unique electronic properties. Recent advances in Vernier templating now allow large shape-persistent fully conjugated porphyrin nanorings to be synthesized, exhibiting unique electronic properties. We examine the impact of different conformations on exciton delocalization and emission depolarization in a range of different porphyrin nanoring topologies with comparable spatial extent.
View Article and Find Full Text PDFAngew Chem Weinheim Bergstr Ger
April 2015
Small alterations to the structure of a star-shaped template totally change its mode of operation. The hexapyridyl template directs the conversion of a porphyrin dimer to the cyclic hexamer, but deleting one pyridine site changes the product to the cyclic decamer, while deleting two binding sites changes the product to the cyclic octamer. This surprising switch in selectivity is explained by the formation of 2:1 caterpillar track complexes, in which two template wheels bind inside the nanoring.
View Article and Find Full Text PDFSmall alterations to the structure of a star-shaped template totally change its mode of operation. The hexapyridyl template directs the conversion of a porphyrin dimer to the cyclic hexamer, but deleting one pyridine site changes the product to the cyclic decamer, while deleting two binding sites changes the product to the cyclic octamer. This surprising switch in selectivity is explained by the formation of 2:1 caterpillar track complexes, in which two template wheels bind inside the nanoring.
View Article and Find Full Text PDFRings of chlorophyll molecules harvest sunlight remarkably efficiently during photosynthesis in purple bacteria. The key to their efficiency lies in their highly delocalized excited states that allow for ultrafast energy migration. Here we show that a family of synthetic nanorings mimic the ultrafast energy transfer and delocalization observed in nature.
View Article and Find Full Text PDFVernier templating exploits a mismatch between the number of binding sites in a template and a reactant to direct the formation of a product that is large enough to bind several template units. Here, we present a detailed study of the Vernier-templated synthesis of a 12-porphyrin nanoring. NMR and small-angle X-ray scattering (SAXS) analyses show that Vernier complexes are formed as intermediates in the cyclo-oligomerization reaction.
View Article and Find Full Text PDFα- and β-cyclodextrins have been used as scaffolds for the synthesis of six- and seven-legged templates by functionalizing every primary CH2OH with a 4-pyridyl moiety. Although these templates are flexible, they are very effective for directing the synthesis of macrocyclic porphyrin oligomers consisting of six or seven porphyrin units. The transfer of chirality from the cyclodextrin templates to their nanoring hosts is evident from NMR and circular dichroism spectroscopy.
View Article and Find Full Text PDFStacked layers of cyclic porphyrin nanorings constitute nanoscale receptacles with variable height and diameter which preferentially adsorb sublimed molecules. Using scanning tunnelling microscopy we determine the filling capacity of these nanoring traps, and the dependence of adsorbate capture on stack height and diameter.
View Article and Find Full Text PDFSolvent-induced aggregates of nanoring cyclic polymers may be transferred by electrospray deposition to a surface where they adsorb as three-dimensional columnar stacks. The observed stack height varies from single rings to four stacked rings with a layer spacing of 0.32 ± 0.
View Article and Find Full Text PDFWe show that peripheral nitro groups enhance the maximum two-photon absorption cross-section of trans-A(2)B(2)-porphyrins bearing two phenylethynyl substituents by more than one order of magnitude. Maximum values as high as 1000 GM result from realization of suitable conditions for effective resonance enhancement along with a lowering of the energy and intensification of the two-photon allowed transitions in the Soret region.
View Article and Find Full Text PDFActive-metal templating has been used to synthesize rotaxanes consisting of a phenanthroline-based macrocycle threaded around a C8, C12, or C20 polyyne chain. The crystal structure of the C12 rotaxane has been determined. In the rhenium(I) carbonyl complex of this rotaxane, with Re(CO)(3)Cl coordinated to the phenanthroline macrocycle, the proximity of the polyyne chain quenches the luminescence of the rhenium.
View Article and Find Full Text PDFLinear π-conjugated oligomers have been widely investigated, but the behavior of the corresponding cyclic oligomers is poorly understood, despite the recent synthesis of π-conjugated macrocycles such as [n]cycloparaphenylenes and cyclo[n]thiophenes. Here we present an efficient template-directed synthesis of a π-conjugated butadiyne-linked cyclic porphyrin hexamer directly from the monomer. Small-angle X-ray scattering data show that this nanoring is shape-persistent in solution, even without its template, whereas the linear porphyrin hexamer is relatively flexible.
View Article and Find Full Text PDFHere we report organic light-emitting diodes incorporating linear and cyclic porphyrin hexamers which have red-shifted emission (λ(PL) = 873 and 920 nm, respectively) compared to single porphyrin rings as a consequence of their extended π-conjugation. We studied the photoluminescence and electroluminescence of blends with poly(9,9'-dioctylfluorene-alt-benzothiadiazole), demonstrating a high photoluminescence quantum efficiency of 7.7% for the linear hexamer when using additives to prevent aggregation and achieving high color purity near-infrared electroluminescence.
View Article and Find Full Text PDFTemplates are widely used to arrange molecular components so they can be covalently linked into complex molecules that are not readily accessible by classical synthetic methods. Nature uses sophisticated templates such as the ribosome, whereas chemists use simple ions or small molecules. But as we tackle the synthesis of larger targets, we require larger templates-which themselves become synthetically challenging.
View Article and Find Full Text PDF