Publications by authors named "Dmitry V Astakhov"

Background: Cytochromes P450 (CYPs) are heme-containing oxidoreductase enzymes with mono-oxygenase activity. Human CYPs catalyze the oxidation of a great variety of chemicals, including xenobiotics, steroid hormones, vitamins, bile acids, procarcinogens, and drugs.

Findings: In our review article, we discuss recent data evidencing that the same CYP isoform can be involved in both bioactivation and detoxification reactions and convert the same substrate to different products.

View Article and Find Full Text PDF

Superfamily of cytochromes P450 (CYPs) is composed of heme-thiolate-containing monooxygenase enzymes, which play crucial roles in the biosynthesis, bioactivation, and detoxification of a variety of organic compounds, both endogenic and exogenic. Majority of CYP monooxygenase systems are multi-component and contain various redox partners, cofactors and auxiliary proteins, which contribute to their diversity in both prokaryotes and eukaryotes. Recent progress in bioinformatics and computational biology approaches make it possible to undertake whole-genome and phylogenetic analyses of CYPomes of a variety of organisms.

View Article and Find Full Text PDF

Under the exposure of lipids to reactive oxygen species (ROS), lipid peroxidation proceeds non-enzymatically and generates an extremely heterogeneous mixture of reactive carbonyl species (RCS). Among them, HNE, HHE, MDA, methylglyoxal, glyoxal, and acrolein are the most studied and/or abundant ones. Over the last decades, significant progress has been achieved in understanding mechanisms of RCS generation, protein/DNA adduct formation, and their identification and quantification in biological samples.

View Article and Find Full Text PDF

The vast majority of human transcriptome is represented by various types of small RNAs with little or no protein-coding capability referred to as non-coding RNAs (ncRNAs). Functional ncRNAs include microRNAs (miRNAs), long non-coding RNAs (lncRNAs), and circular RNAs (circRNAs), which are expressed at very low, but stable and reproducible levels in a variety of cell types. ncRNAs regulate gene expression due to miRNA capability of complementary base pairing with mRNAs, whereas lncRNAs and circRNAs can sponge miRNAs off their target mRNAs to act as competitive endogenous RNAs (ceRNAs).

View Article and Find Full Text PDF