In this work, we analyze the first whispering gallery mode resonator (WGMR) made from monocrystalline yttrium lithium fluoride (YLF). The disc-shaped resonator is fabricated using single-point diamond turning and exhibits a high intrinsic quality factor (Q) of 8×10. Moreover, we employ a novel, to the best of our knowledge, method based on microscopic imaging of Newton's rings through the back of a trapezoidal prism.
View Article and Find Full Text PDFThe National Aeronautics and Space Administration's Deep Space Quantum Link mission concept enables a unique set of science experiments by establishing robust quantum optical links across extremely long baselines. Potential mission configurations include establishing a quantum link between the Lunar Gateway moon-orbiting space station and nodes on or near the Earth. This publication summarizes the principal experimental goals of the Deep Space Quantum Link.
View Article and Find Full Text PDFWe introduce an RF-photonics receiver concept enabling the next generation of ultra-compact millimeter wave radars suitable for cloud and precipitation profiling, planetary boundary layer observations, altimetry and surface scattering measurements. The RF-photonics receiver architecture offers some compelling advantages over traditional electronic implementations, including a reduced number of components and interfaces, leading to reduced size, weight and power (SWaP), as well as lower system noise, leading to improved sensitivity. Low instrument SWaP with increased sensitivity makes this approach particularly attractive for compact space-borne radars.
View Article and Find Full Text PDFA tapered cylindrical dielectric optical waveguide acts as a high quality factor white-light cavity providing high field concentration as well as long optical group delay. It is possible to optimize shape of a lossless taper to suppress reflection of the input light and to achieve infinitely high field concentration. These tapers can be used in sensing and optoelectronics applications instead of conventional microcavities.
View Article and Find Full Text PDFIdentifying the mode numbers in whispering-gallery mode resonators (WGMRs) is important for tailoring them to experimental needs. Here we report on a novel experimental mode analysis technique based on the combination of frequency analysis and far-field imaging for high mode numbers of large WGMRs. The radial mode numbers q and the angular mode numbers p = ℓ-m are identified and labeled via far-field imaging.
View Article and Find Full Text PDFWe have developed a technique for imaging dark, i.e. non-radiating, objects by intensity interferometry measurements using a thermal light source in the background.
View Article and Find Full Text PDFThe generation of high-quality single-photon states with controllable narrow spectral bandwidths and central frequencies is key to facilitate efficient coupling of any atomic system to non-classical light fields. Such an interaction is essential in numerous experiments for fundamental science and applications in quantum communication and information processing, as well as in quantum metrology. Here we implement a fully tunable, narrow-band and efficient single-photon source based on a whispering gallery mode resonator.
View Article and Find Full Text PDFWe report an investigation on angle-cut beta barium borate (BBO) whispering gallery mode (WGM) resonators operating in the ultra violet (UV) wavelength range. A quality (Q) factor of 1.5 × 10(8) has been demonstrated at 370 nm.
View Article and Find Full Text PDFOptical frequency comb generation in whispering gallery mode resonators has been demonstrated in several experiments. The spectra of the combs exhibit a wide variety of complex profiles that are not fully understood. We report a detailed study on frequency comb generation in whispering gallery mode resonators including a complete stability analysis and numerical simulations.
View Article and Find Full Text PDFWe theoretically propose and experimentally demonstrate the design of a novel one-dimensional ringlike macroscopic optical circuit element. The similarity between morphologies of an optical planar waveguide and a whispering-gallery axially symmetric solid-state resonator is used.
View Article and Find Full Text PDFWe demonstrate a method for generation of beams of light with large angular momenta. The method utilizes whispering gallery mode resonators that transform a plane electromagnetic wave into high order Bessel beams. Interference pattern among the beams as well as shadow pictures induced by the beams are observed and studied.
View Article and Find Full Text PDFWe propose a simple method for generation and detection of photons with nonzero angular momentum. The method utilizes high-quality factor ring resonators that transform a plane electromagnetic wave into a wave with nonzero angular momentum, and vice versa. We show that the method is especially promising for studying high-order Bessel beams, unreachable by other techniques.
View Article and Find Full Text PDFWe demonstrate a novel technique for instituting complex and arbitrary shaped micron-scale domain patterns in LiNbO3 at room temperature. Fabrication of continuous domains as narrow as 2 microm across and hexagonal patterns of the same order accompanied by real time visualization of the poling process are presented.
View Article and Find Full Text PDFWe show that the dynamic range of delay lines based on slow light propagation in atomic coherent media is restricted due to absorptive, dispersive, and nonlinear properties of the media. We compare the electromagnetically induced transparency based delay lines with optical fiber and resonator delays.
View Article and Find Full Text PDFWe have observed low-threshold optical hyperparametric oscillations in a high-Q fluorite whispering gallery mode resonator. The oscillations result from the resonantly enhanced four-wave mixing occurring due to Kerr nonlinearity of the material. We demonstrate that, because of the narrow bandwidth of the resonator modes as well as the high efficiency of the resonant frequency conversion, the oscillations produce stable narrow-band beat-note of the pump, signal, and idler waves.
View Article and Find Full Text PDFWe report on the experimental demonstration of the light dragging effect due to atomic motion in a rubidium vapor cell. We find that the minimum group velocity is achieved for light redshifted from the center of the atomic resonance and that the value of this shift increases with decreasing group velocity, in agreement with the theoretical predictions by Kocharovskaya, Rostovtsev, and Scully [Phys. Rev.
View Article and Find Full Text PDF