Publications by authors named "Dmitry Stambolsky"

Intracerebral hemorrhage is an unmet medical need that often leads to the disability and death of a patient. The lack of effective treatments for intracerebral hemorrhage makes it necessary to look for them. Previously, in our proof-of-concept study (Karagyaur M et al.

View Article and Find Full Text PDF

Brain-derived neurotrophic factor (BDNF) is a classic neuroprotective and pro-regenerative factor in peripheral and central nervous tissue. Its ability to stimulate the restoration of damaged nerve and brain tissue after ischemic stroke and intraventricular hemorrhage has been demonstrated. However, the current concept of regeneration allows us to assert that one factor, even if essential, cannot be the sole contributor to this complex biological process.

View Article and Find Full Text PDF

Gene therapy is one of the promising approaches for regenerative medicine. Local and long-term expression of essential growth factors allows to achieve the desired therapeutic effect. However, some aspects of prolonged usage of genetic constructs encoding growth factors, such as toxicity, mutagenicity, genotoxicity, and ability to disseminate from the injection site and mediate ectopic expression of therapeutic proteins, are poorly investigated.

View Article and Find Full Text PDF

Timely nerve restoration is an important factor for the successful regeneration of tissues and organs. It is known that axon regeneration following nerve injury is a multifactorial process that depends on the local expression of neurotrophins, including brain-derived neurotrophic factor (BDNF). Along with the survival of neurons, the active reorganization of the extracellular matrix is an important step for the growth of axons to their targets.

View Article and Find Full Text PDF

This article contains results of analyses of angiotensin II receptors expression in human adipose tissue and stem/stromal cells isolated from adipose tissue. We also provide here data regarding the effect of angiotensin II on intracellular calcium mobilization in adipose tissue derived stem/stromal cells (ADSCs). Discussion of the data can be found in (Sysoeva et al.

View Article and Find Full Text PDF

Transplantation of adipose-derived mesenchymal stem cells (ASCs) induces tissue regeneration by accelerating the growth of blood vessels and nerve. However, mechanisms by which they accelerate the growth of nerve fibers are only partially understood. We used transplantation of ASCs with subcutaneous matrigel implants (well-known in vivo model of angiogenesis) and model of mice limb reinnervation to check the influence of ASC on nerve growth.

View Article and Find Full Text PDF