We study a noisy oscillator with pulse delayed feedback, theoretically and in an electronic experimental implementation. Without noise, this system has multiple stable periodic regimes. We consider two types of noise: (i) phase noise acting on the oscillator state variable and (ii) stochastic fluctuations of the coupling delay.
View Article and Find Full Text PDFWe investigate the relation between the dynamics of a single oscillator with delayed self-feedback and a feed-forward ring of such oscillators, where each unit is coupled to its next neighbor in the same way as in the self-feedback case. We show that periodic solutions of the delayed oscillator give rise to families of rotating waves with different wave numbers in the corresponding ring. In particular, if for the single oscillator the periodic solution is resonant to the delay, it can be embedded into a ring with instantaneous couplings.
View Article and Find Full Text PDFPhilos Trans A Math Phys Eng Sci
June 2017
We propose a model of an adaptive network of spiking neurons that gives rise to a hypernetwork of its dynamic states at the upper level of description. Left to itself, the network exhibits a sequence of transient clustering which relates to a traffic in the hypernetwork in the form of a random walk. Receiving inputs the system is able to generate reproducible sequences corresponding to stimulus-specific paths in the hypernetwork.
View Article and Find Full Text PDFRings of oscillators with delayed pulse coupling are studied analytically, numerically, and experimentally. The basic regimes observed in such rings are rotating waves with constant interspike intervals and phase lags between the neighbors. We show that these rotating waves may destabilize leading to the so-called jittering waves.
View Article and Find Full Text PDFPhys Rev E Stat Nonlin Soft Matter Phys
October 2015
Interaction via pulses is common in many natural systems, especially neuronal. In this article we study one of the simplest possible systems with pulse interaction: a phase oscillator with delayed pulsatile feedback. When the oscillator reaches a specific state, it emits a pulse, which returns after propagating through a delay line.
View Article and Find Full Text PDFOscillatory systems with time-delayed pulsatile feedback appear in various applied and theoretical research areas, and received a growing interest in recent years. For such systems, we report a remarkable scenario of destabilization of a periodic regular spiking regime. At the bifurcation point numerous regimes with nonequal interspike intervals emerge.
View Article and Find Full Text PDFPhys Rev E Stat Nonlin Soft Matter Phys
October 2014
We carry out theoretical and experimental studies of cross-frequency synchronization of two pulse oscillators with time-delayed coupling. In the theoretical part of the paper we utilize the concept of phase resetting curves and analyze the system dynamics in the case of weak coupling. We construct a Poincaré map and obtain the synchronization zones in the parameter space for m:n synchronization.
View Article and Find Full Text PDF