Specimens of a medium-entropy Fe(CoNi)CrC (in at.%) alloy were produced using additive manufacturing (selective laser melting, SLM). The selected parameters of SLM resulted in a very high density in the specimens with a residual porosity of less than 0.
View Article and Find Full Text PDFThe present work reports the direct production of a high-entropy (HE) intermetallic CoNiFeCrAl material with a B2 structure from mechanically activated elemental powder mixtures. Fast and efficient combustion synthesis (CS), spark plasma sintering (SPS), and reactive SPS (RSPS) methods were used to synthesize the HE powders and bulks. The formation of the main B2 phase along with some amounts of secondary BCC and FCC phases are reported, and L12 intermetallic (CS scheme) and BCC based on Cr (CS + SPS and RSPS schemes at 1000 °C) were observed in all samples.
View Article and Find Full Text PDFMulti-principal element alloys (MPEAs) with remarkable performances possess great potential as structural, functional, and smart materials. However, their efficient performance-orientated design in a wide range of compositions and types is an extremely challenging issue, because of properties strongly dependent upon the composition and composition-dominated microstructure. Here, we propose a multistage-design approach integrating machine learning, physical laws and a mathematical model for developing the desired-property MPEAs in a very time-efficient way.
View Article and Find Full Text PDFThe effect of cold rolling on the microstructure and mechanical properties of an Al- and C-containing CoCrFeNiMn-type high-entropy alloy was reported. The alloy with a chemical composition (at %) of (20-23) Co, Cr, Fe, and Ni; 8.82 Mn; 3.
View Article and Find Full Text PDF