Publications by authors named "Dmitry S Belov"

Preserving vanadium in a high oxidation state during chemical transformations can be challenging due to the oxidizing nature of V(+5) species. Oxo and similar isoelectronic ligands have been utilized to stabilize V(+5) by extensive π-donation. However, decreasing the bond order between V and the oxo ligand often results in a reduction of the metal center.

View Article and Find Full Text PDF

The reaction between silylamido complexes of Cr(II), Fe(II), and Co(II) and IMes·2HF salt in the presence of IMes (IMes = 1,3-dimesitylimidazol-2-ylidene) led to isolation of Cr(IMes)F (), Fe(IMes)F (), and Co(IMes)F (). X-ray structural studies revealed that adopts square planar geometry, while and have distorted tetrahedral geometry. Magnetic susceptibility studies of , , and were consistent with high-spin complexes, = 2 for / and = 3/2 for .

View Article and Find Full Text PDF

The present work reports the direct production of a high-entropy (HE) intermetallic CoNiFeCrAl material with a B2 structure from mechanically activated elemental powder mixtures. Fast and efficient combustion synthesis (CS), spark plasma sintering (SPS), and reactive SPS (RSPS) methods were used to synthesize the HE powders and bulks. The formation of the main B2 phase along with some amounts of secondary BCC and FCC phases are reported, and L12 intermetallic (CS scheme) and BCC based on Cr (CS + SPS and RSPS schemes at 1000 °C) were observed in all samples.

View Article and Find Full Text PDF

We present the development of alternative scaffolds and validation of their synthetic pathways as a tool for the exploration of new HIV gp120 inhibitors based on the recently discovered inhibitor of this class, NBD-14136. The new synthetic routes were based on isosteric replacements of the amine and acid precursors required for the synthesis of NBD-14136, guided by molecular modeling and chemical feasibility analysis. To ensure that these synthetic tools and new scaffolds had the potential for further exploration, we eventually tested few representative compounds from each newly designed scaffold against the gp120 inhibition assay and cell viability assays.

View Article and Find Full Text PDF

Catalytic olefin metathesis based on the second- and third-row transition metals has become one of the most powerful transformations in modern organic chemistry. The shift to first-row metals to produce fine and commodity chemicals would be an important achievement to complement existing methods with inexpensive and greener alternatives. In addition, those systems can offer unusual reactivity based on the unique electronic structure of the base metals.

View Article and Find Full Text PDF

We presented our continuing stride to optimize the second-generation NBD entry antagonist targeted to the Phe43 cavity of HIV-1 gp120. We have synthesized thirty-eight new and novel analogs of NBD-14136, earlier designed based on a CHOH "positional switch" hypothesis, and derived a comprehensive SAR. The antiviral data confirmed that the linear alcohol towards the "N" (C4) of the thiazole ring yielded more active inhibitors than those towards the "S" (C5) of the thiazole ring.

View Article and Find Full Text PDF

Vanadium-based catalysts have shown activity and selectivity in ring-opening metathesis polymerization of strained cyclic olefins comparable to those of Ru, Mo, and W catalysts. However, the application of V alkylidenes in routine organic synthesis is limited. Here, we present the first example of ring-closing olefin metathesis catalyzed by well-defined V chloride alkylidene phosphine complexes.

View Article and Find Full Text PDF

Developing well-defined iron-based catalysts for olefin metathesis would be a breakthrough achievement in the field not only to replace existing catalysts by inexpensive metals but also to attain a new reactivity taking advantage of the unique electronic structure of the base metals. Here, we present a two-coordinate homoleptic iron complex, Fe(HMTO) [HMTO=O-2,6-(2,4,6-Me C H ) C H ], that is capable of performing ring-opening metathesis polymerization of norbornene to produce highly stereoregular polynorbornene (99 % cis, syndiotactic). The use of heteroleptic Fe(HMTO)(RO) [RO=(CH ) CF CO, CH (CF ) CO, or Ph(CF ) CO] prepared in situ significantly increases the polymerization rate while preserving selectivity.

View Article and Find Full Text PDF

We previously reported a milestone in the optimization of NBD-11021, an HIV-1 gp120 antagonist, by developing a new and novel analogue, NBD-14189 (), which showed antiviral activity against HIV-1, with a half maximal inhibitory concentration of 89 nM. However, cytotoxicity remained high, and the absorption, distribution, metabolism, and excretion (ADME) data showed relatively poor aqueous solubility. To optimize these properties, we replaced the phenyl ring in the compound with a pyridine ring and synthesized a set of 48 novel compounds.

View Article and Find Full Text PDF

The pathway by which HIV-1 enters host cells is a prime target for novel drug discovery because of its critical role in the life cycle of HIV-1. The HIV-1 envelope glycoprotein gp120 plays an important role in initiating virus entry by targeting the primary cell receptor CD4. We explored the substitution of bulky molecular groups in region I in the NBD class of entry inhibitors.

View Article and Find Full Text PDF

We are continuing our concerted effort to optimize our first lead entry antagonist, NBD-11021, which targets the Phe43 cavity of the HIV-1 envelope glycoprotein gp120, to improve antiviral potency and ADMET properties. In this report, we present a structure-based approach that helped us to generate working hypotheses to modify further a recently reported advanced lead entry antagonist, NBD-14107, which showed significant improvement in antiviral potency when tested in a single-cycle assay against a large panel of Env-pseudotyped viruses. We report here the synthesis of twenty-nine new compounds and evaluation of their antiviral activity in a single-cycle and multi-cycle assay to derive a comprehensive structure-activity relationship (SAR).

View Article and Find Full Text PDF

Into the fold: Prion diseases are neurodegenerative disorders characterized by the accumulation in the brain of a self-replicating, misfolded isoform (PrP ) of the cellular prion protein (PrP ). No therapies are available for these pathologies. We capitalized on previously described cell-based assays to screen a library of small molecules, and identified 55, a compound capable of counteracting both prion replication and toxicity.

View Article and Find Full Text PDF

In our attempt to optimize the lead HIV-1 entry antagonist, NBD-11021, we present in this study the rational design and synthesis of 60 new analogues and determination of their antiviral activity in a single-cycle and a multicycle infection assay to derive a comprehensive structure-activity relationship (SAR). Two of these compounds, NBD-14088 and NBD-14107, showed significant improvement in antiviral activity compared to the lead entry antagonist in a single-cycle assay against a large panel of Env-pseudotyped viruses. The X-ray structure of a similar compound, NBD-14010, confirmed the binding mode of the newly designed compounds.

View Article and Find Full Text PDF

Since our first discovery of a CD4-mimic, NBD-556, which targets the Phe43 cavity of HIV-1 gp120, we and other groups made considerable progress in designing new CD4-mimics with viral entry-antagonist property. In our continued effort to make further progress we have synthesized twenty five new analogs based on our earlier reported viral entry antagonist, NBD-11021. These compounds were tested first in HIV-1 Env-pseudovirus based single-cycle infection assay as well as in a multi-cycle infection assay.

View Article and Find Full Text PDF

Matrix metalloproteinases (MMPs) are well-established targets for several pathologies. In particular, MMP-2 and MMP-13 play a prominent role in cancer progression. In this study, a structure-based screening campaign was applied to prioritize metalloproteinase-oriented fragments.

View Article and Find Full Text PDF

We report the discovery of the bicyclic octahydrocyclohepta[b]pyrrol-4(1H)-one scaffold as a new chemotype with anti-HCV activity on genotype 1b and 2a subgenomic replicons. The most potent compound 34 displayed EC50 values of 1.8 μM and 4.

View Article and Find Full Text PDF

A facile one-pot approach based on a thermally induced metal- and solvent-free 5-endo-dig cyclization reaction of the amino propargylic alcohols in combination with Dess-Martin periodinane-promoted oxidative dearomatization of 4,5,6,7-tetrahydroindole intermediates provides an efficient and robust access to 5,6-dihydro-1H-indol-2(4H)ones. Green, relatively mild and operationally simple characteristics of the synthetic sequence are the major advantages, which greatly amplify the developed methodology. The utility of obtained indolones as unified key precursors is demonstrated by the application of these products to the formal total syntheses of a whole pleiad of Erythrina- and Lycorine-type alkaloids, namely (±)-erysotramidine, (±)-erysotrine, (±)-erythravine, (±)-γ-lycorane, and abnormal erythrinanes (±)-coccoline and (±)-coccuvinine.

View Article and Find Full Text PDF

Earlier we reported the discovery and design of NBD-556 and their analogs which demonstrated their potential as HIV-1 entry inhibitors. However, progress in developing these inhibitors has been stymied by their CD4-agonist properties, an unfavorable trait for use as drug. Here, we demonstrate the successful conversion of a full CD4-agonist (NBD-556) through a partial CD4-agonist (NBD-09027), to a full CD4-antagonist (NBD-11021) by structure-based modification of the critical oxalamide midregion, previously thought to be intolerant of modification.

View Article and Find Full Text PDF

Although all-oral direct-acting antiviral (DAA) therapy for hepatitis C virus (HCV) treatment is now a reality, today's HCV drugs are expensive, and more affordable drugs are still urgently needed. In this work, we report the identification of the 2-phenyl-4,5,6,7-Tetrahydro-1H-indole chemical scaffold that inhibits cellular replication of HCV genotype 1b and 2a subgenomic replicons. The anti-HCV genotype 1b and 2a profiling and effects on cell viability of a selected representative set of derivatives as well as their chemical synthesis are described herein.

View Article and Find Full Text PDF

Herein we suggest an approach to oxygenated bicyclic amino acids based on an aza-Cope-Mannich rearrangement. Seven distinct amino acid scaffolds analogous to the natural products were prepared on a gram scale with precise control of stereochemistry. Successful implementation of our strategy resulted in the formal synthesis of acetylaranotin.

View Article and Find Full Text PDF

We have developed an efficient and stereoselective route to trans-fused octahydrocyclohepta[b]pyrrol-4(1H)-ones. The key features of our synthesis include the regioselective epoxide ring-opening of alkynyl oxiranes and a stereoselective aza-Cope-Mannich reaction. The target compounds were prepared in 3-6 steps from commercially available starting materials (61-75% overall yield) with minimal chromatographic purification.

View Article and Find Full Text PDF

The title chiral compound, C(23)H(28)NO(+)·Br(-), was obtained from an optically active amino-ethanol precursor. The pyrrolidine heterocycle has an envelope conformation, with the C atom α-positioned with respect to the keto group deviating by 0.570 (6) Å from the mean plane of other atoms.

View Article and Find Full Text PDF