The thermal behaviour of Ag[PtCl] and Ag[PtCl] complex salts in inert and reducing atmospheres has been studied. The thermolysis of compounds in a helium atmosphere is shown to occur in two stages. At the first stage, the complexes decompose in the temperature range of 350-500 °C with the formation of platinum and silver chloride and the release of chlorine gas.
View Article and Find Full Text PDFIn view of the continuous debates on the environmental impact of blockchain technologies, in particular, cryptocurrency mining, accompanied by severe carbon dioxide emissions, a technical solution has been considered assuming direct monetization of associated petroleum gas currently being flared. The proposed approach is based on the technology of low-temperature steam reforming of hydrocarbons, which allows flare gas conditioning toward the requirements for fuel for gas piston and gas turbine power plants. The generation of electricity directly at the oil field and its use for on-site cryptocurrency mining transform the process of wasteful flaring of valuable hydrocarbons into an economically attractive integrated processing of natural resources.
View Article and Find Full Text PDF[M(NH ) ]A (M=Pt, Pd; A=CrO , Cr O ) and [Pt(NH ) (NO )(Cr O )]NO complex salts were synthesized and characterized by a number of physicochemical methods of analysis (IR, single-crystal and powder XRD, and simultaneous thermogravimetry and differential scanning calorimetry with evolved gas analysis mass spectrometry). Thermolysis of the salts obtained in a hydrogen atmosphere proceeds with the partial reduction of chromium to a metallic state and the formation of M Cr (M=Pt, Pd) metal solid solution with a chromium content of up to 22 at % and chromium(III) oxide. The thermal decomposition of salts in an inert and oxidizing atmosphere passes through the formation stage of the MCrO phase with the delafossite structure followed by its subsequent decomposition into chromium(III) oxide and noble metal.
View Article and Find Full Text PDF