Publications by authors named "Dmitry P Vetrov"

In this paper we address the problem of finding the most probable state of a discrete Markov random field (MRF), also known as the MRF energy minimization problem. The task is known to be NP-hard in general and its practical importance motivates numerous approximate algorithms. We propose a submodular relaxation approach (SMR) based on a Lagrangian relaxation of the initial problem.

View Article and Find Full Text PDF

Many clustering algorithms, including cluster ensembles, rely on a random component. Stability of the results across different runs is considered to be an asset of the algorithm. The cluster ensembles considered here are based on k-means clusterers.

View Article and Find Full Text PDF