Publications by authors named "Dmitry Nekhaev"

Spiking neural networks (SNNs) are believed to be highly computationally and energy efficient for specific neurochip hardware real-time solutions. However, there is a lack of learning algorithms for complex SNNs with recurrent connections, comparable in efficiency with back-propagation techniques and capable of unsupervised training. Here we suppose that each neuron in a biological neural network tends to maximize its activity in competition with other neurons, and put this principle at the basis of a new SNN learning algorithm.

View Article and Find Full Text PDF