Publications by authors named "Dmitry M Korotin"

We investigate the electronic sub-system of a recently designed LiAu superconducting electride to reveal its many-body correlated nature and magnetic properties. Using maximally localized Wannier functions (MLWFs) to describe the interstitial anion electron (IAE) states, it was found that these states are partially occupied with a population of 1.5e and have negligible hybridization with the almost completely filled p-Au states.

View Article and Find Full Text PDF

The notions of ionicity and covalency of chemical bonds, effective atomic charges, and decomposition of the cohesive energy into ionic and covalent terms are fundamental yet elusive. For example, different approaches give different values of atomic charges. Pursuing the goal of formulating a universal approach based on firm physical grounds (first-principles or non-empirical), we develop a formalism based on Wannier functions with atomic orbital symmetry and capable of defining these notions and giving numerically robust results that are in excellent agreement with traditional chemical thinking.

View Article and Find Full Text PDF

We investigate the role of interstitial electronic states in the metal-to-semiconductor transition and the origin of the volume collapse in CaN during the pressure-induced phase transitions accompanied by changes of electride subspace dimensionality. Our findings highlight the importance of correlation effects in the electride subsystem as an essential component of the complex phase transformation mechanism. By employing a simplified model that incorporates the distortion of the local environment surrounding the interstitial quasi-atom (ISQ) which emerges under pressure and solving this model by Dynamical Mean Field Theory (DMFT), we successfully reproduced the evolution between the metallic and semiconducting phases and captured the remarkable volume collapse.

View Article and Find Full Text PDF

Electrides contain interstitial electrons with the states that are spatially separated from the crystal framework states and form a detached electronic subsystem. In mayenite [CaAlO](e) interstitial electrons form a unique charge network where localization and delocalization coexist, pointing to the importance of investigating the many-body nature of electride states. Using density functional theory and dynamical mean-field theory, we show a tendency toward electron localization and antiferromagnetic pairing, which leads to the formation of an experimentally observed peak under the Fermi level.

View Article and Find Full Text PDF

On the basis of the first-principles evolutionary crystal structure prediction of stable compounds in the Cu-F system, we predict two experimentally unknown stable phases - Cu2F5 and CuF3. Cu2F5 comprises two interacting magnetic subsystems with Cu atoms in the oxidation states +2 and +3. CuF3 contains magnetic Cu3+ ions forming a lattice by antiferromagnetic coupling.

View Article and Find Full Text PDF

Theoretical studies using the state-of-the-art density functional theory and dynamicalmean-field theory (DFT + DMFT) method show that weak electronic correlation effects are crucial for reproducing the experimentally observed pressure-induced phase transitions of calcium from β-tin toand then to the simple cubic structure. The formation of an electride state in calcium leads to the emergence of partially filled and localized electronic states under compression. The electride state was described using a basis containing molecular orbitals centered on the interstitial site and Ca-d states.

View Article and Find Full Text PDF

A correlated metallic state can arise as a result of the presence either strong charge or strong spin fluctuations. In the first case, as was shown first in (2004 Phys. Today 57 53) for the Hubbard model on the Bethe lattice, the system is a correlated metallic state close to the Mott-insulator state if the ratio of the value of the Coulomb interaction parameter U and the band width W is [Formula: see text].

View Article and Find Full Text PDF

We suggest a possible scenario for magnetic transition under pressure in dimerised systems where electrons are localised on molecular orbitals. The mechanism of transition is not related with competition between kinetic energy and on-site Coulomb repulsion as in Mott-Hubbard systems, or between crystal-field splitting and intra-atomic exchange as in classical atomic spin-state transitions. Instead, it is driven by the change of bonding-antibonding splitting on part of the molecular orbitals.

View Article and Find Full Text PDF