The iconographic heritage is one of the treasures of Byzantine art that have enriched the south of Italy, and Sicily in particular, since the early 16th century. In this work, the investigations of a Sicilian Icon of Greek-Byzantine origin, the , is reported for the first time. The study was carried out using mainly non-invasive imaging techniques (photography in reflectance and grazing visible light, UV fluorescence, infrared reflectography, radiography, and computed tomography) and spectroscopic techniques (X-ray fluorescence and infrared spectroscopy).
View Article and Find Full Text PDFPure BiFeO (BFO) and doped BiLaFeO (BLFO) thin films were prepared on Pt/TiO/SiO/Si substrates by a modified sol-gel technique using a separate hydrolysis procedure. The effects of final crystallization temperature and La doping on the phase structure, film morphology, and nanoscale piezoelectric properties were investigated. La doping and higher crystallization temperature lead to an increase in the grain size and preferred (102) texture of the films.
View Article and Find Full Text PDFBackground: No prospective randomized trials comparing transection techniques for the liver parenchyma transection during laparoscopic liver resection have been performed. The aim of the study was to compare the immediate outcomes of hydro-jet dissection with ultrasonic surgical aspirator in laparoscopic liver parenchyma transection in a prospective randomized single-center study.
Methods: Consecutive patients with liver benign and malignant tumors presenting to a single center from May 2017 to May 2020 were enrolled in the study.
Herein we report on the synthesis and the effects of gradual loading of TiO nanotube array layers with ZnO upon surface wettability. Two-step preparation was chosen, where TiO nanotube layers, grown in a first instance by anodization of a Ti foil, were gradually loaded with controlled amounts of ZnO using the reactive RF magnetron sputtering. After crystallization annealing, the formerly amorphous TiO nanotubes were converted to predominantly anatase crystalline phase, as detected by XRD measurements.
View Article and Find Full Text PDFSef (similar expression to fgf genes) is a feedback inhibitor of fibroblast growth factor (FGF) signaling and functions in part by binding to FGF receptors and inhibiting their activation. Genetic studies in mice and humans indicate an important role for fibroblast growth factor signaling in bone growth and homeostasis. We, therefore, investigated whether Sef had a function role in skeletal acquisition and remodeling.
View Article and Find Full Text PDFSprouty1 (Spry1) is a conserved antagonist of FGF signaling. The goal of this study was to further explore the downstream mechanisms governing Spry1 inhibition of endothelial cell proliferation. Up-regulation of Spry1 in HUVECs inhibited tube formation on Matrigel (n = 6, P < 0.
View Article and Find Full Text PDFThe FGF signaling pathway plays essential roles in endochondral ossification by regulating osteoblast proliferation and differentiation, chondrocyte proliferation, hypertrophy, and apoptosis. FGF signaling is controlled by the complementary action of both positive and negative regulators of the signal transduction pathway. The Spry proteins are crucial regulators of receptor tyrosine kinase-mediated MAPK signaling activity.
View Article and Find Full Text PDFMammalian Sprouty (Spry) gene expression is rapidly induced upon activation of the FGF receptor signaling pathway in multiple cell types including cells of mesenchymal and epithelial origin. Spry2 inhibits FGF-dependent ERK activation and thus Spry acts as a feedback inhibitor of FGF-mediated proliferation. In addition, Spry2 interacts with the ring-finger-containing E3 ubiquitin ligase, c-Cbl, in a manner that is dependent upon phosphorylation of Tyr55 of Spry2.
View Article and Find Full Text PDFSef (similar expression to fgf genes) is a member of the fibroblast growth factor (FGF) synexpression group that negatively regulates FGF receptor (FGFR) signaling in zebrafish during early embryonic development and in mammalian cell culture systems. The mechanism by which Sef exerts its inhibitory effect remains controversial. It has been reported that Sef functions either through binding to and inhibiting FGFR1 activation or by acting downstream of FGF receptors at the level of MEK/ERK kinases.
View Article and Find Full Text PDFSef was recently identified as a negative regulator of fibroblast growth factor (FGF) signaling in a genetic screen of zebrafish and subsequently in mouse and humans. By inhibiting FGFR1 tyrosine phosphorylation and/or Ras downstream events, Sef inhibits FGF-mediated ERK activation and cell proliferation as well as PC12 cell differentiation. Here we show that Sef and a deletion mutant of Sef lacking the extracellular domain (SefIC) physically interact with TAK1 (transforming growth factor-beta-associated kinase) and activate JNK through a TAK1-MKK4-JNK pathway.
View Article and Find Full Text PDFThe interactions between Notch (N) receptors and their transmembrane ligands, Jagged1 (JI) and Delta1 (Dl1), mediate signaling events between neighboring cells that are crucial during embryonal development and in adults. Since the non-transmembrane extracellular form of J1 acts as an antagonist of N activation in NIH 3T3 mouse fibroblast cells and induces fibroblast growth factor 1 (FGF1)-dependent transformation (Small, D., Kovalenko, D.
View Article and Find Full Text PDFSignaling through fibroblast growth factor receptors (FGFRs) is essential for many cellular processes including proliferation and migration as well as differentiation events such as angiogenesis, osteogenesis, and chondrogenesis. Recently, genetic screens in Drosophila and gene expression screens in zebrafish have resulted in the identification of several feedback inhibitors of FGF signaling. One of these, Sef (similar expression to fgf genes), encodes a transmembrane protein that belongs to the FGF synexpression group.
View Article and Find Full Text PDFAberrant activations of the Notch and fibroblast growth factor receptor (FGFR) signaling pathways have been correlated with neoplastic growth in humans and other mammals. Here we report that the suppression of Notch signaling in NIH 3T3 cells by the expression of either the extracellular domain of the Notch ligand Jagged1 or dominant-negative forms of Notch1 and Notch2 results in the appearance of an exaggerated fibroblast growth factor (FGF)-dependent transformed phenotype characterized by anchorage-independent growth in soft agar. Anchorage-independent growth exhibited by Notch-repressed NIH 3T3 cells may result from prolonged FGFR stimulation caused by both an increase in the expression of prototypic and oncogenic FGF gene family members and the nonclassical export of FGF1 into the extracellular compartment.
View Article and Find Full Text PDF