Publications by authors named "Dmitry Korzhenevskiy"

In vivo imaging of model organisms is heavily reliant on fluorescent proteins with high intracellular brightness. Here we describe a practical method for rapid optimization of fluorescent proteins via directed molecular evolution in cultured mammalian cells. Using this method, we were able to perform screening of large gene libraries containing up to 2 × 10 independent random genes of fluorescent proteins expressed in HEK cells, completing one iteration of directed evolution in a course of 8 days.

View Article and Find Full Text PDF

Here we report bisphenol derivatives of fluorene (BDFs) as a new type of chemical probes targeting a histone-like HU protein, a global regulator of bacterial nucleoids, via its dimerization interface perturbation. BDFs were identified by virtual screening and molecular docking that targeted the core of DNA-binding β-saddle-like domain of the HU protein from Spiroplasma melliferum. However, NMR spectroscopy, complemented with molecular dynamics and site-directed mutagenesis, indicated that the actual site of the inhibitors' intervention consists of residues from the α-helical domain of one monomer and the side portion of the DNA-binding domain of another monomer.

View Article and Find Full Text PDF

Genetically encoded calcium indicators (GECIs) have become a widespread tool for the visualization of neuronal activity. As compared to popular GCaMP GECIs, the FGCaMP indicator benefits from calmodulin and M13-peptide from the fungi and , which prevent its interaction with the intracellular environment. However, FGCaMP exhibits a two-phase fluorescence behavior with the variation of calcium ion concentration, has moderate sensitivity in neurons (as compared to the GCaMP6s indicator), and has not been fully characterized in vitro and in vivo.

View Article and Find Full Text PDF

Green fluorescent genetically encoded calcium indicators (GECIs) are the most popular tool for visualization of calcium dynamics in vivo. However, most of them are based on the EGFP protein and have similar molecular brightnesses. The NTnC indicator, which is composed of the mNeonGreen fluorescent protein with the insertion of troponin C, has higher brightness as compared to EGFP-based GECIs, but shows a limited inverted response with an ΔF/F of 1.

View Article and Find Full Text PDF

Oligopeptidases B (OpdBs) are trypsin-like peptidases from protozoa and bacteria that belong to the prolyl oligopeptidase (POP) family. All POPs consist of C-terminal catalytic domain and N-terminal β-propeller domain and exist in two major conformations: closed (active), where the domains and residues of the catalytic triad are positioned close to each other, and open (non-active), where two domains and residues of the catalytic triad are separated. The interdomain interface, particularly, one of its salt bridges (SB1), plays a role in the transition between these two conformations.

View Article and Find Full Text PDF

The pre-crystallization solution of the transaminase from (TaTT) has been studied by small-angle X-ray scattering (SAXS). Regular changes in the oligomeric composition of the protein were observed after the addition of the precipitant. Comparison of the observed oligomers with the crystal structure of TaTT (PDB ID 6GKR) shows that dodecamers may act as building blocks in the growth of transaminase single crystals.

View Article and Find Full Text PDF

In this study, we identified a new gene (aph(3″)-Id) coding for a streptomycin phosphotransferase by using phylogenetic comparative analysis of the genome of the oxytetracycline-producing strain Streptomyces rimosus ATCC 10970. Cloning the aph(3″)-Id gene in E.coli and inducing its expression led to an increase in the minimum inhibitory concentration of the recombinant E.

View Article and Find Full Text PDF

The histone-like (HU) protein is one of the major nucleoid-associated proteins of the bacterial nucleoid, which shares high sequence and structural similarity with IHF but differs from the latter in DNA-specificity. Here, we perform an analysis of structural-dynamic properties of HU protein from Spiroplasma melliferum and compare its behavior in solution to that of another mycoplasmal HU from Mycoplasma gallisepticum. The high-resolution heteronuclear NMR spectroscopy was coupled with molecular-dynamics study and comparative analysis of thermal denaturation of both mycoplasmal HU proteins.

View Article and Find Full Text PDF

Background: The structure and function of bacterial nucleoid are controlled by histone-like proteins of HU/IHF family, omnipresent in bacteria and also founding archaea and some eukaryotes.HU protein binds dsDNA without sequence specificity and avidly binds DNA structures with propensity to be inclined such as forks, three/four-way junctions, nicks, overhangs and DNA bulges. Sequence comparison of thousands of known histone-like proteins from diverse bacteria phyla reveals relation between HU/IHF sequence, DNA-binding properties and other protein features.

View Article and Find Full Text PDF

The histone-like (HU) protein is one of the major nucleoid-associated proteins involved in DNA supercoiling and compaction into bacterial nucleoid as well as in all DNA-dependent transactions. This small positively charged dimeric protein binds DNA in a non-sequence specific manner promoting DNA super-structures. The majority of HU proteins are highly conserved among bacteria; however, HU protein from Mycoplasma gallisepticum (HUMgal) has multiple amino acid substitutions in the most conserved regions, which are believed to contribute to its specificity to DNA targets unusual for canonical HU proteins.

View Article and Find Full Text PDF

The three-dimensional structure of the histone-like HU protein from the mycoplasma Spiroplasma melliferum KC3 (HUSpm) was determined at 1.4 Å resolution, and the thermal stability of the protein was evaluated by differential scanning calorimetry. A detailed analysis revealed that the three-dimensional structure of the HUSpm dimer is similar to that of its bacterial homologues but is characterized by stronger hydrophobic interactions at the dimer interface.

View Article and Find Full Text PDF

Aminoglycoside phosphotransferases represent a broad class of enzymes that promote bacterial resistance to aminoglycoside antibiotics via the phosphorylation of hydroxyl groups in the latter. Here we report the spatial structure of the 3'-aminoglycoside phosphotransferase of novel VIII class (AphVIII) solved by X-ray diffraction method with a resolution of 2.15 Å.

View Article and Find Full Text PDF

The crystal structure of recombinant prolidase from Thermococcus sibiricus was determined by X-ray diffraction at a resolution of 2.6 Å and was found to contain a tetramer in the asymmetric unit. A protein crystal grown in microgravity using the counter-diffusion method was used for X-ray studies.

View Article and Find Full Text PDF

HU proteins belong to the nucleoid-associated proteins (NAPs) that are involved in vital processes such as DNA compaction and reparation, gene transcription etc. No data are available on the structures of HU proteins from mycoplasmas. To this end, the HU protein from the parasitic mycoplasma Spiroplasma melliferum KC3 was cloned, overexpressed in Escherichia coli and purified to homogeneity.

View Article and Find Full Text PDF