Publications by authors named "Dmitry Korkin"

Mechanical properties of engineered connective tissues are critical for their success, yet modern sensors that measure physical qualities of tissues for quality control are invasive and destructive. The goal of this work was to develop a noncontact, nondestructive method to measure mechanical attributes of engineered skin substitutes during production without disturbing the sterile culture packaging. We optimized a digital holographic vibrometry (DHV) system to measure the mechanical behavior of Apligraf living cellular skin substitute through the clear packaging in multiple conditions: resting on solid agar as when the tissue is shipped, on liquid media in which it is grown, and freely suspended in air as occurs when the media is removed for feeding.

View Article and Find Full Text PDF
Article Synopsis
  • Mycobacteria manage their mRNA stability to adapt to environmental stresses, but the specific mechanisms for this regulation aren't well understood.
  • In a study, the researchers measured the half-lives of mRNA across different growth conditions and found that hypoxia led to increased global stabilization of transcripts, especially for essential genes.
  • They also created machine learning models to analyze the impact of various transcript properties on stability, revealing that these properties differ based on growth conditions and whether the transcripts have leaders or not.
View Article and Find Full Text PDF

RNA isoforms influence cell identity and function. However, a comprehensive brain isoform map was lacking. We analyze single-cell RNA isoforms across brain regions, cell subtypes, developmental time points and species.

View Article and Find Full Text PDF

Long-read RNA sequencing has shed light on transcriptomic complexity, but questions remain about the functionality of downstream protein products. We introduce Biosurfer, a computational approach for comparing protein isoforms, while systematically tracking the transcriptional, splicing, and translational variations that underlie differences in the sequences of the protein products. Using Biosurfer, we analyzed the differences in 32,799 pairs of GENCODE annotated protein isoforms, finding a majority (70%) of variable N-termini are due to the alternative transcription start sites, while only 9% arise from 5' UTR alternative splicing.

View Article and Find Full Text PDF

The prediction of RNA secondary structures is essential for understanding its underlying principles and applications in diverse fields, including molecular diagnostics and RNA-based therapeutic strategies. However, the complexity of the search space presents a challenge. This work proposes a Graph Convolutional Network (GCNfold) for predicting the RNA secondary structure.

View Article and Find Full Text PDF
Article Synopsis
  • Research in population genetics has historically focused on European ancestry, but global studies like the 1000 Genomes Project highlight genetic variations across different ethnic groups.
  • A new concept, "edgotype," examines how mutations impact protein interactions, and this study used a semi-supervised learning approach to analyze ~50,000 non-synonymous SNVs and their functional roles.
  • Findings suggest that many variants found in healthy populations can alter protein interactions, potentially explaining differences in disease susceptibility among populations and revealing insights into genetic diversity.
View Article and Find Full Text PDF
Article Synopsis
  • Humans have a remarkable talent for recognizing and remembering faces, which helps them link these features to identities.
  • Neuroimaging studies highlight how our brain processes these facial features.
  • The lack of standardization is a key factor in why ideography hasn't been widely adopted.
View Article and Find Full Text PDF

Chemically modified small interfering RNAs (siRNAs) are promising therapeutics guiding sequence-specific silencing of disease genes. Identifying chemically modified siRNA sequences that effectively silence target genes remains challenging. Such determinations necessitate computational algorithms.

View Article and Find Full Text PDF

RNA isoforms influence cell identity and function. Until recently, technological limitations prevented a genome-wide appraisal of isoform influence on cell identity in various parts of the brain. Using enhanced long-read single-cell isoform sequencing, we comprehensively analyze RNA isoforms in multiple mouse brain regions, cell subtypes, and developmental timepoints from postnatal day 14 (P14) to adult (P56).

View Article and Find Full Text PDF

The continuous evolution of SARS-CoV-2 variants complicates efforts to combat the ongoing pandemic, underscoring the need for a dynamic platform for the rapid development of pan-viral variant therapeutics. Oligonucleotide therapeutics are enhancing the treatment of numerous diseases with unprecedented potency, duration of effect, and safety. Through the systematic screening of hundreds of oligonucleotide sequences, we identified fully chemically stabilized siRNAs and ASOs that target regions of the SARS-CoV-2 genome conserved in all variants of concern, including delta and omicron.

View Article and Find Full Text PDF
Article Synopsis
  • Researchers have struggled to determine the exact structure of SARS-CoV-2, particularly its envelope which protects the viral RNA and contains key proteins.
  • The study utilizes advanced computational modeling to analyze the dynamic interactions of the underexplored membrane (M) protein, revealing that M proteins can form large, filament-like structures.
  • Findings from molecular dynamics simulations confirm the stability of the envelope and align with existing experimental data, showcasing a new method for modeling viral structures from scratch.
View Article and Find Full Text PDF

Dynamic processes on networks, be it information transfer in the Internet, contagious spreading in a social network, or neural signaling, take place along shortest or nearly shortest paths. Computing shortest paths is a straightforward task when the network of interest is fully known, and there are a plethora of computational algorithms for this purpose. Unfortunately, our maps of most large networks are substantially incomplete due to either the highly dynamic nature of networks, or high cost of network measurements, or both, rendering traditional path finding methods inefficient.

View Article and Find Full Text PDF

During infection, the pathogen's entry into the host organism, breaching the host immune defense, spread and multiplication are frequently mediated by multiple interactions between the host and pathogen proteins. Systematic studying of host-pathogen interactions (HPIs) is a challenging task for both experimental and computational approaches and is critically dependent on the previously obtained knowledge about these interactions found in the biomedical literature. While several HPI databases exist that manually filter HPI protein-protein interactions from the generic databases and curated experimental interactomic studies, no comprehensive database on HPIs obtained from the biomedical literature is currently available.

View Article and Find Full Text PDF

Alternative splicing introduces an additional layer of protein diversity and complexity in regulating cellular functions that can be specific to the tissue and cell type, physiological state of a cell, or disease phenotype. Recent high-throughput experimental studies have illuminated the functional role of splicing events through rewiring protein-protein interactions; however, the extent to which the macromolecular interactions are affected by alternative splicing has yet to be fully understood. In silico methods provide a fast and cheap alternative to interrogating functional characteristics of thousands of alternatively spliced isoforms.

View Article and Find Full Text PDF

Cyst nematodes induce a multicellular feeding site within roots called a syncytium. It remains unknown how root cells are primed for incorporation into the developing syncytium. Furthermore, it is unclear how CLAVATA3/EMBRYO SURROUNDING REGION (CLE) peptide effectors secreted into the cytoplasm of the initial feeding cell could have an effect on plant cells so distant from where the nematode is feeding as the syncytium expands.

View Article and Find Full Text PDF

Single-cell RNA sequencing (scRNA-seq) is a recent technology that enables fine-grained discovery of cellular subtypes and specific cell states. Analysis of scRNA-seq data routinely involves machine learning methods, such as feature learning, clustering, and classification, to assist in uncovering novel information from scRNA-seq data. However, current methods are not well suited to deal with the substantial amount of noise that is created by the experiments or the variation that occurs due to differences in the cells of the same type.

View Article and Find Full Text PDF

During its first two and a half months, the recently emerged 2019 novel coronavirus, SARS-CoV-2, has already infected over one-hundred thousand people worldwide and has taken more than four thousand lives. However, the swiftly spreading virus also caused an unprecedentedly rapid response from the research community facing the unknown health challenge of potentially enormous proportions. Unfortunately, the experimental research to understand the molecular mechanisms behind the viral infection and to design a vaccine or antivirals is costly and takes months to develop.

View Article and Find Full Text PDF

Rapid progress in high-throughput -omics technologies moves us one step closer to the datacalypse in life sciences. In spite of the already generated volumes of data, our knowledge of the molecular mechanisms underlying complex genetic diseases remains limited. Increasing evidence shows that biological networks are essential, albeit not sufficient, for the better understanding of these mechanisms.

View Article and Find Full Text PDF

Motivation: The complexity of protein-protein interactions (PPIs) is further compounded by the fact that an average protein consists of two or more domains, structurally and evolutionary independent subunits. Experimental studies have demonstrated that an interaction between a pair of proteins is not carried out by all domains constituting each protein, but rather by a select subset. However, determining which domains from each protein mediate the corresponding PPI is a challenging task.

View Article and Find Full Text PDF

Background: Heterodera glycines, commonly referred to as the soybean cyst nematode (SCN), is an obligatory and sedentary plant parasite that causes over a billion-dollar yield loss to soybean production annually. Although there are genetic determinants that render soybean plants resistant to certain nematode genotypes, resistant soybean cultivars are increasingly ineffective because their multi-year usage has selected for virulent H. glycines populations.

View Article and Find Full Text PDF

Gram-negative bacteria are responsible for hundreds of millions infections worldwide, including the emerging hospital-acquired infections and neglected tropical diseases in the third-world countries. Finding a fast and cheap way to understand the molecular mechanisms behind the bacterial infections is critical for efficient diagnostics and treatment. An important step towards understanding these mechanisms is the discovery of bacterial effectors, the proteins secreted into the host through one of the six common secretion system types.

View Article and Find Full Text PDF