Publications by authors named "Dmitry I Osolodkin"

Article Synopsis
  • X-ray structures of coronavirus drug targets were rapidly acquired during the early COVID-19 pandemic, especially focusing on the main protease (Mpro) of SARS-CoV-2, which is crucial for developing direct antiviral drugs.
  • A systematic, semi-automated method was developed to select the best ensemble of Mpro structures for virtual screening of potential inhibitors, as the selection process was complex.
  • This method was validated against existing approaches and led to the discovery of new thienopyrimidinone derivatives that effectively inhibit the Mpro enzyme.
View Article and Find Full Text PDF

Evolutionary potential of viruses can result in outbreaks of well-known viruses and emergence of novel ones. Pharmacological methods of intervening the reproduction of various less popular, but not less important viruses are not available, as well as the spectrum of antiviral activity for most known compounds. In the framework of chemical biology paradigm, characterization of antiviral activity spectrum of new compounds allows to extend the antiviral chemical space and provides new important structure-activity relationships for data-driven drug discovery.

View Article and Find Full Text PDF

Tick-borne encephalitis virus (TBEV) causes a severe disease, tick-borne encephalitis (TBE), that has a substantial epidemiological importance for Northern Eurasia. Between 10,000 and 15,000 TBE cases are registered annually despite the availability of effective formaldehyde-inactivated full-virion vaccines due to insufficient vaccination coverage, as well as sporadic cases of vaccine breakthrough. The development of improved vaccines would benefit from the atomic resolution structure of the antigen.

View Article and Find Full Text PDF

X-ray imaging of virus particles at the European XFEL could eventually allow their complete structures to be solved, potentially approaching the resolution of other structural virology methods. To achieve this ambitious goal with today's technologies, about 1 ml of purified virus suspension containing at least 10 particles per millilitre is required. Such large amounts of concentrated suspension have never before been obtained for enveloped viruses.

View Article and Find Full Text PDF
Article Synopsis
  • The addition of lipophilic groups to nucleoside analogues enhances their antiviral potency, particularly against viruses like TBEV and EV-A71.
  • Researchers synthesized a series of N-benzyladenosine analogues using specific cross-coupling methods to analyze their effectiveness against different flaviviruses and enteroviruses.
  • The compounds showed strong inhibition of flavivirus replication at low concentrations, targeting viral RNA synthesis while displaying minimal cytotoxicity, but they did not affect enterovirus reproduction, suggesting a unique mechanism focused on flaviviruses.
View Article and Find Full Text PDF

The main approach to preventing tick-borne encephalitis (TBE) is vaccination. Formaldehyde-inactivated TBE vaccines have a proven record of safety and efficiency but have never been characterized structurally with atomic resolution. We report a cryoelectron microscopy (cryo-EM) structure of the formaldehyde-inactivated TBE virus (TBEV) of Sofjin-Chumakov strain representing the Far-Eastern subtype.

View Article and Find Full Text PDF

Spirocyclic compounds containing heterocyclic moieties represent promising 3D scaffolds for modern drug design. In the search for novel anti-flaviviral agents, we have obtained a series of 3-[-bis(sulfonyl)amino]isoxazolines containing spiro-annulated cyclooctane rings and assessed their antiviral activity against tick-borne encephalitis (TBEV), yellow fever (YFV), and West Nile (WNV) viruses. The structural analogs of spirocyclic compounds with a single sulfonyl group or 1,2-annulated cyclooctane ring were also investigated.

View Article and Find Full Text PDF

Tick-borne encephalitis virus (TBEV), yellow fever virus (YFV), and West Nile virus (WNV) are flaviviruses causing emerging arthropod-borne infections of a great public health concern. Clinically approved drugs are not available to complement or replace the existing vaccines, which do not provide sufficient coverage. Thus, the discovery and characterization of new antiflaviviral chemotypes would advance studies in this field.

View Article and Find Full Text PDF

Introduction of point mutations is one of the forces enabling arboviruses to rapidly adapt in a changing environment. The influence of these mutations on the properties of the virus is not always obvious. In this study, we attempted to clarify this influence using an in silico approach.

View Article and Find Full Text PDF

Amphipathic nucleoside and non-nucleoside derivatives of pentacyclic aromatic hydrocarbon perylene are known as potent non-cytotoxic broad-spectrum antivirals. Here we report 3-methyl-5-(perylen-3-ylethynyl)-uracil-1-acetic acid and its amides, a new series of compounds based on a 5-(perylen-3-ylethynyl)-uracil scaffold. The compounds demonstrate pronounced in vitro activity against arthropod-borne viruses, namely tick-borne encephalitis virus (TBEV) and yellow fever virus (YFV), in plaque reduction assays with EC values below 1.

View Article and Find Full Text PDF

Tick-borne encephalitis virus (TBEV) is an enveloped RNA virus, a member of the genus (family ). Here, we provide a detailed analysis of the size and structure of the inactivated TBEV vaccine strain Sofjin-Chumakov. Four analytical methods were used to analyze individual TBEV particles-negative staining TEM, cryo-EM, atomic force microscopy (AFM), and nanoparticle tracking analysis (NTA).

View Article and Find Full Text PDF

One of the promising approaches in the development of nucleoside prodrugs is to use the nucleoside analogs containing lipophilic biodegradable residues, which are cleaved to biologically active forms after metabolic transformations in the cell. The introduction of such fragments makes it possible to reduce the general toxicity of the drug candidate and increase its stability in the cell. In order to study the influence of biodegradable lipophilic groups on antiviral activity and cytotoxicity, in this work we synthesized N-benzyl-2',3',5'-tri-O-nicotinoyl adenosine and N-(3-fluorobenzyl)-2',3',5'-tri-O-nicotinoyl adenosine, derivatives of N-benzyladenosine (BAR) and N-(3-fluorobenzyl)adenosine (FBAR), which had previously shown prominent antiviral activity against human enterovirus EV-A71 but appeared to be cytotoxic.

View Article and Find Full Text PDF

The design of effective target-specific drugs for COVID-19 treatment has become an intriguing challenge for modern science. The SARS-CoV-2 main protease, M, responsible for the processing of SARS-CoV-2 polyproteins and production of individual components of viral replication machinery, is an attractive candidate target for drug discovery. Specific M inhibitors have turned out to be promising anticoronaviral agents.

View Article and Find Full Text PDF

Tick-borne encephalitis virus (TBEV), a member of the genus , is common in Europe and Asia and causes a severe disease of the central nervous system. A promising approach in the development of therapy for TBEV infection is the search for small molecule antivirals targeting the flavivirus envelope protein E, particularly its β--octyl-d-glucoside binding pocket (β-OG pocket). However, experimental studies of candidate antivirals may be complicated by varying amounts and different forms of the protein E in the virus samples.

View Article and Find Full Text PDF

The severe COVID-19 pandemic drives the research toward the SARS-CoV-2 virion structure and the possible therapies against it. Here, we characterized the β-propiolactone inactivated SARS-CoV-2 virions using transmission electron microscopy (TEM) and atomic force microscopy (AFM). We compared the SARS-CoV-2 samples purified by two consecutive chromatographic procedures (size exclusion chromatography [SEC], followed by ion-exchange chromatography [IEC]) with samples purified by ultracentrifugation.

View Article and Find Full Text PDF

Emerging and re-emerging viruses periodically cause outbreaks and epidemics all over the world, eventually leading to global events such as the current pandemic of the novel SARS-CoV-2 coronavirus infection COVID-19. Therefore, an urgent need for novel antivirals is crystal clear. Here we present the synthesis and evaluation of an antiviral activity of phenoxazine-based nucleoside analogs divided into three groups: (1) 8-alkoxy-substituted, (2) acyclic, and (3) carbocyclic.

View Article and Find Full Text PDF

Tick-borne encephalitis is an important human arbovirus neuroinfection spread across the Northern Eurasia. Inhibitors of tick-borne encephalitis virus (TBEV) strain Absettarov, presumably targeting E protein -octyl-β-d-glucoside (β-OG) pocket, were reported earlier. In this work, these inhibitors were tested against seven strains representing three main TBEV subtypes.

View Article and Find Full Text PDF
Article Synopsis
  • * Two RS methods were tested: collaborative filtering and content-based filtering, both showing good results in predicting antiviral activity classes and interaction profiles for new compounds.
  • * The methods achieved high prediction quality, with ROC scores over 0.9, suggesting that even basic RS techniques can be valuable in discovering antiviral drugs.
View Article and Find Full Text PDF

Discovery of drugs against newly emerged pathogenic agents like the SARS-CoV-2 coronavirus (CoV) must be based on previous research against related species. Scientists need to get acquainted with and develop a global oversight over so-far tested molecules. Chemography (herein used Generative Topographic Mapping, in particular) places structures on a human-readable 2D map (obtained by dimensionality reduction of the chemical space of molecular descriptors) and is thus well suited for such an audit.

View Article and Find Full Text PDF

Rigid amphipathic fusion inhibitors are potent broad-spectrum antivirals based on the perylene scaffold, usually decorated with a hydrophilic group linked via ethynyl or triazole. We have sequentially simplified these structures by removing sugar moiety, then converting uridine to aniline, then moving to perylenylthiophenecarboxylic acids and to perylenylcarboxylic acid. All these polyaromatic compounds, as well as antibiotic heliomycin, still showed pronounced activity against tick-borne encephalitis virus (TBEV) with limited toxicity in porcine embryo kidney (PEK) cell line.

View Article and Find Full Text PDF

Humic substances (HS) are complex natural mixtures comprising a large variety of compounds produced during decomposition of decaying biomass. The molecular composition of HS is extremely diverse as it was demonstrated with the use of high resolution mass spectrometry. The building blocks of HS are mostly represented by plant-derived biomolecules (lignins, lipids, tannins, carbohydrates, etc.

View Article and Find Full Text PDF

The propargylamide of N3-Pom-protected 5-(perylen-3-ylethynyl)uracil acetic acid, a universal precursor, was used in a CuAAC click reaction for the synthesis of several derivatives, including three ramified molecules with high activities against tick-borne encephalitis virus (TBEV). Pentaerythritol-based polyazides were used for the assembly of molecules containing 2⋯4 antiviral 5-(perylen-3-ylethynyl)uracil scaffolds, the first examples of polyvalent perylene antivirals. Cluster compounds showed enhanced absorbance, however, their fluorescence was reduced due to self-quenching.

View Article and Find Full Text PDF

The signaling of cytokinins (CKs), classical plant hormones, is based on the interaction of proteins that constitute the multistep phosphorelay system (MSP): catalytic receptors-sensor histidine kinases (HKs), phosphotransmitters (HPts), and transcription factors-response regulators (RRs). Any CK receptor was shown to interact in vivo with any of the studied HPts and . In addition, both of these proteins tend to form a homodimer or a heterodimeric complex with protein-paralog.

View Article and Find Full Text PDF

Infections caused by flaviviruses pose a huge threat for public health all over the world. The search for therapeutically relevant compounds targeting tick-borne flaviviruses requires the exploration of novel chemotypes. In the present work a large series of novel polyfunctionalized isoxazole derivatives bearing substituents with various steric and electronic effects was obtained by our unique versatile synthetic procedure and their antiviral activity against tick-borne encephalitis, Omsk hemorrhagic fever, and Powassan viruses was studied in vitro.

View Article and Find Full Text PDF

Rigid amphipathic fusion inhibitors (RAFIs) are potent antivirals based on a perylene core linked with a nucleoside moiety. Sugar-free analogues of RAFIs, 5-(perylen-3-ylethynyl)uracil-1-acetic acid 1 and its amides 2, were synthesized using combined protection group strategy. Compounds 1 and 2 appeared to have low toxicity on porcine embryo kidney (PEK) or rhabdomiosarcoma (RD) cells together with remarkable activity against enveloped tick-borne encephalitis virus (TBEV): EC values vary from 0.

View Article and Find Full Text PDF