Tyrosyl-DNA-phosphodiesterase 1 (TDP1) is a promising target for antitumor therapy; the use of TDP1 inhibitors with a topoisomerase 1 poison such as topotecan is a potential combination therapy. In this work, a novel series of 3,5-disubstituted thiazolidine-2,4-diones was synthesized and tested against TDP1. The screening revealed some active compounds with IC values less than 5 μM.
View Article and Find Full Text PDFTyrosyl-DNA phosphodiesterase 1(TDP1) is a promising target for a new therapy in oncological disease as an adjunct to topoisomerase 1 (TOP1) drugs. In this paper, novel thiazolidin-4-one derivatives with a benzyl and monoterpene substituents were synthesized. Compounds with a monoterpene fragment attached via a phenyloxy linker were active against TDP1 with IC values in the 1 ÷ 3 μM range, while direct attachment of monoterpene moiety to the thiazolidin-4-one fragment had no activity.
View Article and Find Full Text PDFInhibiting tyrosyl-DNA phosphodiesterase 1 (TDP1) is a promising strategy for increasing the effectiveness of existing antitumor therapy since it can remove the DNA lesions caused by anticancer drugs, which form covalent complexes with topoisomerase 1 (TOP1). Here, new adamantane-monoterpene conjugates with a 1,2,4-triazole or 1,3,4-thiadiazole linker core were synthesized, where (+)-and (-)-campholenic and (+)-camphor derivatives were used as monoterpene fragments. The campholenic derivatives - and - showed activity against TDP1 at a low micromolar range with IC ~5-6 μM, whereas camphor-containing compounds and were ineffective.
View Article and Find Full Text PDF