This paper is dedicated to the memory of Oleg B. Ptitsyn (1929-1999) and presents an answer to his question: "What is the role of conserved non-functional residues in protein folding?". This answer follows from the experimental works of three labs.
View Article and Find Full Text PDFInt J Mol Sci
July 2024
Cytochrome (CytC), a one-electron carrier, transfers electrons from complex to cytochrome oxidase (CcO) in the electron-transport chain. Electrostatic interaction with the partners, complex and CcO, is ensured by a lysine cluster near the heme forming the Universal Binding Site (UBS). We constructed three mutant variants of mitochondrial CytC with one (2Mut), four (5Mut), and five (8Mut) Lys->Glu substitutions in the UBS and some compensating Glu->Lys substitutions at the periphery of the UBS for charge compensation.
View Article and Find Full Text PDFInt J Mol Sci
May 2024
In the original publication [...
View Article and Find Full Text PDFNeuroglobin (Ngb) is a cytosolic heme protein that plays an important role in protecting cells from apoptosis through interaction with oxidized cytochrome (Cyt ) released from mitochondria. The interaction of reduced Ngb and oxidized Cyt is accompanied by electron transfer between them and the reduction in Cyt . Despite the growing number of studies on Ngb, the mechanism of interaction between Ngb and Cyt is still unclear.
View Article and Find Full Text PDFCurcumin attracts huge attention because of its biological properties: it is antiproliferative, antioxidant, anti-inflammatory, immunomodulatory and so on. However, its usage has been limited by poor water solubility and low bioavailability. Herein, to solve these problems, we developed curcumin-loaded nanoparticles based on end-capped amphiphilic poly(N-vinylpyrrolidone).
View Article and Find Full Text PDFIn this paper the answer to O. B. Ptitsyn's question "What is the role of conserved non-functional residues in apomyoglobin" is presented, which is based on the research results of three laboratories.
View Article and Find Full Text PDFRetinal-containing light-sensitive proteins - rhodopsins - are found in many microorganisms. Interest in them is largely explained by their role in light energy storage and photoregulation in microorganisms, as well as the prospects for their use in optogenetics to control neuronal activity, including treatment of various diseases. One of the representatives of microbial rhodopsins is ESR, the retinal protein of Exiguobacterium sibiricum.
View Article and Find Full Text PDFDestroying tumor vasculature is a relevant therapeutic strategy due to its involvement in tumor progression. However, adaptive resistance to approved antiangiogenic drugs targeting VEGF/VEGFR pathway requires the recruitment of additional targets. In this aspect, targeting TRAIL pathway is promising as it is an important component of the immune system involved in tumor immunosurveillance.
View Article and Find Full Text PDFCytochrome c (CytC) is a single-electron carrier between complex bc1 and cytochrome c-oxidase (CcO) in the electron transport chain (ETC). It is also known as a good radical scavenger but its participation in electron flow through the ETC makes it impossible to use CytC as a radical sensor. To solve this problem, a series of mutants were constructed with substitutions of Lys residues in the universal binding site (UBS) which interact electrostatically with negatively charged Asp and Glu residues at the binding sites of CytC partners, bc1 complex and CcO.
View Article and Find Full Text PDFNeuroglobin, which is a heme protein from the globin family that is predominantly expressed in nervous tissue, can promote a neuronal survivor. However, the molecular mechanisms underlying the neuroprotective function of Ngb remain poorly understood to this day. The interactions between neuroglobin and mitochondrial cytochrome may serve as at least one of the mechanisms of neuroglobin-mediated neuroprotection.
View Article and Find Full Text PDFCell-surface display using anchor motifs of outer membrane proteins allows exposure of target peptides and proteins on the surface of microbial cells. Previously, we obtained and characterized highly catalytically active recombinant oligo-α-1,6-glycosidase from the psychrotrophic bacterium Exiguobacterium sibiricum (EsOgl). It was also shown that the autotransporter AT877 from Psychrobacter cryohalolentis and its deletion variants efficiently displayed type III fibronectin (Fn3) domain 10 on the surface of Escherichia coli cells.
View Article and Find Full Text PDFProteorhodopsins (PRs), bacterial light-driven outward proton pumps comprise the first discovered and largest family of rhodopsins, they play a significant role in life on the Earth. A big remaining mystery was that up-to-date there was no described bacterial rhodopsins pumping protons at acidic pH despite the fact that bacteria live in different pH environment. Here we describe conceptually new bacterial rhodopsins which are operating as outward proton pumps at acidic pH.
View Article and Find Full Text PDFMicrobial rhodopsins comprise a diverse family of retinal-containing membrane proteins that convert absorbed light energy to transmembrane ion transport or sensory signals. Incorporation of these proteins in proteoliposomes allows their properties to be studied in a native-like environment; however, unidirectional protein orientation in the artificial membranes is rarely observed. We aimed to obtain proteoliposomes with unidirectional orientation using a proton-pumping retinal protein from , ESR, as a model.
View Article and Find Full Text PDFThe TRAIL (TNF-related apoptosis-inducing ligand) apoptotic pathway is extensively exploited in the development of targeted antitumor therapy due to TRAIL specificity towards its cognate receptors, namely death receptors DR4 and DR5. Although therapies targeting the TRAIL pathway have encountered many obstacles in attempts at clinical implementation for cancer treatment, the unique features of the TRAIL signaling pathway continue to attract the attention of researchers. Special attention is paid to the design of novel nanoscaled delivery systems, primarily aimed at increasing the valency of the ligand for improved death receptor clustering that enhances apoptotic signaling.
View Article and Find Full Text PDFAnti-tumor properties of several cytokines have already been investigated in multiple experiments and clinical trials. However, those studies evidenced substantial toxicities, even at low cytokine doses, and the lack of tumor specificity. These factors significantly limit clinical applications.
View Article and Find Full Text PDFTRAIL (TNF-related apoptosis-inducing ligand) and its derivatives are potentials for anticancer therapy due to the selective induction of apoptosis in tumor cells upon binding to death receptors DR4 or DR5. Previously, we generated a DR5-selective TRAIL mutant variant DR5-B overcoming receptor-dependent resistance of tumor cells to TRAIL. In the current study, we improved the antitumor activity of DR5-B by fusion with a tumor-homing iRGD peptide, which is known to enhance the drug penetration into tumor tissues.
View Article and Find Full Text PDFAutoinduction is a simple approach for heterologous protein expression that helps to achieve the high-level production of recombinant proteins in soluble form. In this work, we investigated if the application of an autoinduction strategy could help to optimize the production of bifunctional protein SRH-DR5-B, the DR5-specific TRAIL variant DR5-B fused to a VEGFR2-specific peptide SRHTKQRHTALH for dual antitumor and antiangiogenic activity. The protein was expressed in Escherichia coli SHuffle B T7, BL21(DE3), and BL21(DE3)pLysS strains.
View Article and Find Full Text PDFQuite a long time ago, Oleg B. Ptitsyn put forward a hypothesis about the possible functional significance of the molten globule (MG) state for the functioning of proteins. MG is an intermediate between the unfolded and the native state of a protein.
View Article and Find Full Text PDFThis Special Issue of demonstrates the almost unlimited possibilities of modern protein engineering in gene expression, protein production and modification, as well as the design and creation of new proteins [...
View Article and Find Full Text PDFIn the last two decades, bifunctional proteins have been created by genetic and protein engineering methods to increase therapeutic effects in various diseases, including cancer. Unlike conventional small molecule or monotargeted drugs, bifunctional proteins have increased biological activity while maintaining low systemic toxicity. The recombinant anti-cancer cytokine TRAIL has shown a limited therapeutic effect in clinical trials.
View Article and Find Full Text PDFA key event in the cytochrome -dependent apoptotic pathway is the permeabilization of the outer mitochondrial membrane, resulting in the release of various apoptogenic factors, including cytochrome , into the cytosol. It is believed that the permeabilization of the outer mitochondrial membrane can be induced by the peroxidase activity of cytochrome in a complex with cardiolipin. Using a number of mutant variants of cytochrome , we showed that both substitutions of Lys residues from the universal binding site for oppositely charged Glu residues and mutations leading to a decrease in the conformational mobility of the red Ω-loop in almost all cases did not affect the ability of cytochrome to bind to cardiolipin.
View Article and Find Full Text PDFIncreasing the production of recombinant antibodies while ensuring high and stable protein quality remains a challenge in mammalian cell culture. This review is devoted to advances in the field of obtaining stable and optimal glycosylation of therapeutic antibodies based on IgA, as well as the subsequent issues of glycosylation control of glycoproteins during their production. Current studies also demonstrate a general need for a more fundamental understanding of the use of CHO cell-based producer cell lines, through which the glycoprofile of therapeutic IgA antibodies is produced and the dependence of glycosylation on culture conditions could be controlled.
View Article and Find Full Text PDFPeptide pore blockers and their fluorescent derivatives are useful molecular probes to study the structure and functions of the voltage-gated potassium Kv1.3 channel, which is considered as a pharmacological target in the treatment of autoimmune and neurological disorders. We present Kv1.
View Article and Find Full Text PDFThe main aim of our work was to create a full-length bispecific antibody (BsAb) as a vehicle for the targeted delivery of interferon-beta (IFN-β) to ErbB2 tumor cells in the form of non-covalent complex of BsAb and IFN-β. Such a construct is a CrossMab-type BsAb, consisting of an ErbB2-recognizing trastuzumab moiety, a part of chimeric antibody to IFN-β, and human IgG1 Fc domain carrying knob-into-hole amino acid substitutions necessary for the proper assembly of bispecific molecules. The IFN-β- recognizing arm of BsAb not only forms a complex with the cytokine but neutralizes its activity, thus providing a mechanism to avoid the side effects of the systemic action of IFN-β by blocking IFN-β Interaction with cell receptors in the process of cytokine delivery to tumor sites.
View Article and Find Full Text PDF